Targeted molecular therapy of GBM.

Brain Pathol

Department of Pathology and Laboratory Medicine, The David Geffen UCLA School of Medicine, Los Angeles, Calif. 90095-1732, USA.

Published: January 2003

Major advances in molecular biology, cellular biology and genomics have substantially improved our understanding of cancer. Now, these advances are being translated into therapy. Targeted therapy directed at specific molecular alterations is already creating a shift in the treatment of cancer patients. Glioblastoma (GBM), the most common brain cancer of adults, is highly suited for this new approach. GBMs commonly overexpress the oncogenes EGFR and PDGFR, and contain mutations and deletions of tumor suppressor genes PTEN and TP53. Some of these alterations lead to activation of the P13K/Akt and Ras/MAPK pathways, which provide targets for therapy. In this paper, we review the ways in which molecular therapies are being applied to GBM patients, and describe the tools of these approaches: pathway inhibitors, monoclonal antibodies and oncolytic viruses. We describe strategies to: i) target EGFR, its ligand-independent variant EGFRvIII, and PDGFR on the cell surface, ii) inhibit constitutively activate RAS/MAPK and PI3K/Akt signaling pathways, iii) target TP53 mutant tumors, and iv) block GBM angiogenesis and invasion. These new approaches are likely to revolutionize the treatment of GBM patients. They will also present new challenges and opportunities for neuropathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095874PMC
http://dx.doi.org/10.1111/j.1750-3639.2003.tb00006.xDOI Listing

Publication Analysis

Top Keywords

gbm patients
8
gbm
5
targeted molecular
4
therapy
4
molecular therapy
4
therapy gbm
4
gbm major
4
major advances
4
advances molecular
4
molecular biology
4

Similar Publications

Glioblastoma multiforme (GBM) is the most prevalent, treatment-resistant, and fatal form of brain malignancy. It is characterized by genetic heterogeneity, and an infiltrative nature, and GBM treatment is highly challenging. Despite multimodal therapies, clinicians lack efficient prognostic and predictive markers.

View Article and Find Full Text PDF

Hemorrhagic stroke is a known complication of glioma, yet the underlying mechanisms remain poorly understood. This study aims to investigate key biomarkers of glioma-related hemorrhage to provide insights into glioma molecular therapies. Data were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to analyze differentially expressed genes (DEGs) in glioma by contrasting glioblastoma (GBM) with low-grade gliomas (LGGs).

View Article and Find Full Text PDF

The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

A Subtype Specific Probe for Targeted Magnetic Resonance Imaging of M2 Tumor-Associated Macrophages in Brain Tumors.

Acta Biomater

January 2025

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:

Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!