We tested the hypothesis that myocardial ischemia-reperfusion (I/R)-induced apoptosis is attenuated in transgenic mice overexpressing cardiac A(1) adenosine receptors. Isolated hearts from transgenic (TG, n = 19) and wild-type (WT, n = 22) mice underwent 30 min of ischemia and 2 h of reperfusion, with evaluation of apoptosis, caspase 3 activity, function, and necrosis. I/R-induced apoptosis was attenuated in TG hearts. TG hearts had less I/R-induced apoptotic nuclei (0.88 +/- 0.10% vs. 4.22 +/- 0.24% terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in WT, P < 0.05), less DNA fragmentation (3.30 +/- 0.38-fold vs. 4.90 +/- 0.39-fold over control in WT, P < 0.05), and less I/R-induced caspase 3 activity (145 +/- 25% over nonischemic control vs. 234 +/- 31% in WT, P < 0.05). TG hearts also had improved recovery of function and less necrosis than WT hearts. In TG hearts pretreated with LY-294002 (3 microM) to evaluate the role of phosphosinositol-3-kinase in acute signaling, there was no change in the functional protection or apoptotic response to I/R. These data suggest that cardioprotection with transgenic overexpression of A(1) adenosine receptors involves attenuation of I/R-induced apoptosis that does not involve acute signaling through phosphoinositol-3-kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00251.2002DOI Listing

Publication Analysis

Top Keywords

caspase activity
12
i/r-induced apoptosis
12
apoptosis caspase
8
apoptosis attenuated
8
adenosine receptors
8
function necrosis
8
hearts hearts
8
acute signaling
8
hearts
6
+/-
6

Similar Publications

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

The present study was aimed at revealing the metabolic changes that occurred in the cellular lipid pattern of acute and chronic myeloid leukaemia cells following treatment with cannabidiol (CBD). CBD is a non-psychoactive compound present in Cannabis sativa L., which has shown an antiproliferative action in these type of cancer cells.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a global health concern, ranking as the fourth leading cause of cancer-related deaths worldwide. However, the role of piwi-interacting RNAs (piRNAs) in HCC processes has not been extensively explored. Through small RNA sequencing, our study identified a specific piRNA, pir-hsa-216911, which is highly expressed in HCC cells.

View Article and Find Full Text PDF

Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD metabolism.

Cell Death Dis

January 2025

In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.

Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!