This study was designed to evaluate the effects of hyperbaric oxygen (HBO2) on intestinal microflora and bacterial translocation (BT) caused by experimentally induced thermal injury in rats. Rats were separated into four groups, namely, HBO2 group, thermal injury (TI) group, TI + HBO2 group, and control group. All groups were further separated into short-term (2 days) and long-term (7 days) treatment or injury groups. Control group was neither exposed to thermal injury nor was given any treatment. Thirty percent second-degree thermal burn was induced on the dorsal body part of the rats in TI groups. In the HBO2 groups, rats received HBO2 treatment either without TI or following TI induction, for 2 and 7 days, respectively. Sampling from tissues and portal vein was performed on day 3 in the short-term groups and on day 8 in the long-term groups. Samples were cultured for identification of bacteria and colony counts. HBO2 treatment significantly reduced the colony counts of endogenous microflora in distal ileum of healthy rats (p < .05), while TI significantly increased the colony counts of endogenous microflora in distal ileum in short and long-term TI groups (p < .05). Presence of bacterial translocation was proven by bacterial isolation in mesenteric lymph nodes, liver, spleen and blood. Both short- and long-term HBO2 treatment following TI significantly reduced the colony counts of intestinal microflora (p < .05) and prevented bacterial translocation almost completely. It is concluded that thermal injury causes both bacterial overgrowth within intestinal lumen and bacterial translocation across the intestinal wall. HBO2 administration prevents both bacterial overgrowth and translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08941930290086128DOI Listing

Publication Analysis

Top Keywords

bacterial translocation
20
thermal injury
16
colony counts
16
hbo2 treatment
12
hyperbaric oxygen
8
bacterial
8
prevents bacterial
8
hbo2
8
intestinal microflora
8
groups
8

Similar Publications

Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD.

View Article and Find Full Text PDF

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), a scaffold protein, plays a pivotal role in the NF-κB pathway downstream of T-cell receptors (TCRs) and B-cell receptors (BCRs). As a key signaling hub, MALT1 integrates various pathways, making it essential for both innate and adaptive immunity. However, its role in the antibacterial immune responses of crustaceans remains unclear.

View Article and Find Full Text PDF

The early microbial colonization of the porcine gut is an important priming factor for gut and immune development. Nevertheless, little is known about the composition of microbes that translocate into the ileo-cecal lymph nodes (ICLN) in the neonatal phase. This study aimed to characterize age- and nutrition-related changes in the metabolically active bacterial and fungal composition of the ICLN in suckling and newly weaned piglets.

View Article and Find Full Text PDF

Metabolomic interpretation of bacterial and fungal contribution to per- and polyfluoroalkyl substances interface migration in waterlogged paddy fields.

Environ Pollut

December 2024

Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release.

View Article and Find Full Text PDF

Background: Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea.

Methods: Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!