The purpose of the present study was to determine whether oxypurinol, a xanthine oxidase inhibitor, reduces free radicals and brain injury in the rat pup hypoxic-ischemia (HI) model. Seven-day-old rat pups had right carotid arteries ligated followed by 2.5h of hypoxia (8% oxygen). Oxypurinol or vehicle was administered by i.p. injection at 5 min after reoxygenation and once daily for 3 days. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Oxypurinol treatments did not reduce weight loss in the right hemisphere. Brain weight loss in the right hemisphere were -26.2+/-3.6, -15.2+/-6.9, -21.7+/-4.4, -15.8+/-5.1, and -16.7+/-3.4% in vehicle (n=33), 10 (n=17), 20 (n=16), 40 (n=15), and 135 mg/kg (n=13) oxypurinol-treated groups (p>0.05), respectively. Brain thiobarbituric acid-reacting substances (TBARS) were assessed 3 and 6h after reoxygenation. Concentrations of TBARS rose 1.5-fold due to HI. Oxypurinol did not significantly reduce an HI-induced increase in brain TBARS. Thus, xanthine oxidase may not be the primary source of oxy-radicals in pup brain and as such oxypurinol does not prevent free radical-mediated lipid peroxidation or protect against brain injury in the neonatal rat HI model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0361-9230(02)00963-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!