Time-minimized determination of ribosome and tRNA levels in bacterial cells using flow field-flow fractionation.

Anal Biochem

Department of Technical Analytical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden.

Published: February 2003

The evaluation of the translation capacity of cells that produce recombinant proteins can be made by monitoring their ribosomal composition. In a previous use of asymmetrical flow field-flow fractionation (AsFlFFF) for this purpose the overall analysis time was more than 1 h and 40 min, based on a standard protocol for cell harvest, washing, cell disruption, and the final 8-min AsFlFFF determination of ribosome and subunits. In the present work the overall analysis time was reduced to 16 min. The washing step was deleted and a time-consuming freeze-thaw cycle. Cell disruption was obtained by a time-minimized lysozyme and detergent treatment for 1.5 min, respectively. The ribosomal material was finally fractionated and quantified in only 6 min, without previous centrifugation, using AsFlFFF. The great time reduction will enable the future use of AsFlFFF at-line to a growing cell cultivation, continuously monitoring the change in ribosomal composition or in other applications requiring high sample throughput. To demonstrate the high efficiency of the method the ribosome and tRNA composition in an Escherichia coli cultivation was monitored every half an hour, giving 18 measurements across the complete growth curve, a frequency of data enough to make decisions about induction or termination of the cultivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-2697(02)00541-9DOI Listing

Publication Analysis

Top Keywords

determination ribosome
8
ribosome trna
8
flow field-flow
8
field-flow fractionation
8
ribosomal composition
8
analysis time
8
cell disruption
8
time-minimized determination
4
trna levels
4
levels bacterial
4

Similar Publications

Purpose: This work described a new species of Ceratomyxa, based on morphological and phylogenetic analyzes of myxospores collected from the gallbladder of the fish Astyanax mexicanus.

Methods: Sixty-two specimens were captured, between December 2022 and February 2024, in the Flexal River, in the community of Tessalônica, state of Amapá. The specimens were transported alive to the Laboratory of Morphophysiology and Animal Health, at the State University of Amapá, where the studies were carried out.

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!