The master equation provides a quantitative description of the interaction between collisional energy transfer and chemical reaction for dissociation, isomerization, and association processes. The approach is outlined for both irreversible and reversible dissociation, isomerization, and association reactions. There is increasing interest, especially in combustion, in association reactions that involve several linked potential wells, with the possibility of isomerization, collisional stabilization, and dissociation along several product channels. A major aim of the application of the master equation to such systems is the linking of the eigenvalues obtained by its solution to the rate coefficients for the phenomenological chemical reactions that describe the system and that are used in combustion models. The approach is illustrated by reference to the reactions C2H5 + O2, H + SO2, and the dissociation and isomerization of alkyl radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!