A useful strategy for identifying ligand binding domains of G protein-coupled receptors has been the exploitation of species differences in antagonist potencies. We have used this approach for the CCR1 chemokine receptor with a novel series of antagonists, the 4-hydroxypiperidines, which were discovered by high throughput screening of human CCR1 and subsequently optimized. The structure-activity relationships for a number of different 4-hydroxypiperidine antagonists for human and mouse CCR1 were examined by receptor binding and functional assays. These compounds exhibit major differences in their rank order of potency for the human and mouse chemokine receptor CCR1. For example, the initial lead template, BX 510, which was a highly potent functional antagonist for human CCR1 (K(i) = 21 nM) was >400-fold less active on mouse CCR1 (K(i) = 9150 nM). However, increasing the length of the linker between the piperidine and dibenzothiepine groups by one methylene group generated a compound, BX 511, which was equipotent for both human and mouse CCR1. These and other analogs of the lead template BX 510, which have major differences in potency for human and mouse CCR1, are described, and a model for their interaction with human CCR1 is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.170.4.1910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!