Bacteriophage lambda has been extensively studied, and the abundance of genetic and biochemical information available makes this an ideal model system to study virus DNA packaging at the molecular level. Limited in vitro packaging efficiency has hampered progress toward this end, however. It has been suggested that limited packaging efficiency is related to poor activity of purified procapsids. We describe the construction of a vector that expresses lambda procapsids with a yield that is 40-fold greater than existing systems. Consistent with previous studies, packaging of a mature lambda genome is very inefficient in vitro, with only 4% of the input procapsids utilized. Concatemeric DNA is the preferred packaging substrate in vivo, and procapsids interact with a nucleoprotein complex known as complex I to initiate genome packaging. When complex I is used as a packaging substrate in vitro, capsid utilization is extremely efficient, and 40% of the input DNA is packaged. Finally, we provide evidence for a packaging-stimulated ATPase activity, and kinetically characterize this reaction quantifying the energetic cost of DNA packaging in bacteriophage lambda.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.2002.1602DOI Listing

Publication Analysis

Top Keywords

bacteriophage lambda
12
packaging
9
lambda genome
8
genome packaging
8
dna packaging
8
packaging efficiency
8
packaging substrate
8
lambda
5
biochemical characterization
4
characterization bacteriophage
4

Similar Publications

A Lambda-evo (λ) phage platform for Zika virus E protein display.

Appl Microbiol Biotechnol

January 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No, 2508, C.P. 07360, Mexico City, Mexico.

One of the most significant bacteriophage technologies is phage display, in which heterologous peptides are exhibited on the virion surface. This work describes the display of λ decorative protein D linked to the E protein domain III of Zika virus (D-ZE), to the GFP protein (D-GFP), or to different domain III epitopes of the E protein (D-TD), exhibited on the surface of an in vitro evolved lambda phage (λ). This phage harbors a gene D deletion and was subjected to directed evolution using Escherichia coli W3110/pD-ZE as background.

View Article and Find Full Text PDF

Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a pre-formed prohead shell in ~5 min at room temperature in vitro. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers.

View Article and Find Full Text PDF

Research on phage λ: a lucky choice.

EcoSal Plus

December 2024

Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

Bacteriophage λ is a paradigm in the field of gene regulation and one of the best-understood systems in genetic regulatory biology. A so-called Genetic Switch determines the mechanisms by which λ transitions to its dual lifestyles-lytic or lysogenic. When λ initiates the lysogenic lifestyle, the phage-encoded CI repressor binds cooperatively to multi-partite operators in a defined pattern that autoregulates repression of phage lytic promoters as well as activation of the lysogenic promoter.

View Article and Find Full Text PDF

Second-Generation Phage Lambda Platform Employing SARS-CoV-2 Fusion Proteins as a Vaccine Candidate.

Vaccines (Basel)

October 2024

Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Article Synopsis
  • The COVID-19 pandemic illustrates how emerging viruses can disrupt global systems, exacerbated by factors like dense populations and environmental changes.
  • Vaccines are critical in fighting outbreaks, and researchers have created a vaccine platform that can showcase multiple viral antigens simultaneously.
  • This advanced platform uses engineered proteins to enhance vaccine effectiveness in mice, demonstrating the potential for quick development of vaccines for various infectious diseases.
View Article and Find Full Text PDF

Bacterial WYL domain transcriptional repressors sense single-stranded DNA to control gene expression.

Nucleic Acids Res

December 2024

Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA.

Bacteria encode a wide array of immune systems to protect themselves against ubiquitous bacteriophages and foreign DNA elements. While these systems' molecular mechanisms are becoming increasingly well known, their regulation remains poorly understood. Here, we show that an immune system-associated transcriptional repressor of the wHTH-WYL-WCX family, CapW, directly binds single-stranded DNA to sense DNA damage and activate expression of its associated immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!