In Japanese quail (Coturnix japonica), previous studies indicated that the distribution of reduced nicotinamide dinucleotide phosphate (NADPH) diaphorase overlaps with steroid-sensitive areas that contain dense populations of aromatase-immunoreactive (ARO-ir) cells. We investigated here the anatomical relationships between aromatase (ARO) and nitric oxide synthase (NOS)-containing cells that were visualized both by NOS-immunohistochemistry and NADPH-histochemistry. The distribution of ARO-ir and of NADPH-positive cells in the forebrain observed here matched exactly the distribution previously reported. The distribution of NOS-immunoreactive material in the vicinity of ARO-ir cell groups appeared similar to the distribution of NADPH-positive structures previously identified by histochemistry. The number of NOS-immunoreactive cells was similar to the number of NADPH-positive cells and they were found in the same brain regions. In contrast, few NOS-immunoreactive fibers were observed whereas numerous NADPH-positive fibers and punctuate structures were present in many areas. Major groups of NOS-immunoreactive/NADPH-positive neurons were adjacent to the main ARO-ir cell groups, such as the medial preoptic nucleus, the bed nucleus of the stria terminalis and the nucleus ventromedialis hypothalamic. However, examination of adjacent sections indicated that there is very little overlap between the NOS-immunoreactive and ARO-ir cell populations. This notion got further support by double-labeled sections where no double-labeled cells could be identified. In sections stained simultaneously by histochemistry for NADPH and immunohistochemistry for ARO, many NADPH-positive fibers and punctate structures were closely associated with ARO-ir perikarya. Taken together, the present data indicate that NOS is not or very rarely colocalized with ARO but that NOS inputs are closely associated with ARO-ir cells. Based on previous work in a variety of model systems, it can be hypothesized that these inputs modulate the expression or activity of ARO in the quail brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0891-0618(02)00092-3 | DOI Listing |
J Neuroendocrinol
March 2011
The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA.
Some components of male sexual and agonistic behaviours are considered to be regulated by the same neurocircuitry in the medial preoptic nucleus (POM) and the medial portion of bed nucleus of the stria terminalis (BSTM). To better understand this neurocircuitry, numbers of aromatase- (ARO) or arginine vasotocin- (AVT) immunoreactive (ir) neurones expressing immediate early gene protein FOS were compared in the POM and BSTM of male chickens following sexual or agonistic behaviours. Observations were made on males showing: (i) appetitive (courtship) and consummatory (copulation) sexual behaviours; (ii) only appetitive sexual behaviour, or (iii) displaying agonistic behaviour toward other males.
View Article and Find Full Text PDFJ Chem Neuroanat
March 2007
Center for Cellular and Molecular Neurobiology, University of Liège, B-4000 Liège, Belgium.
In birds and mammals, aromatase activity in the preoptic-hypothalamic region (HPOA) is usually higher in males than in females. It is, however, not known whether the enzymatic sex difference reflects the differential activation of aromatase transcription or some other control mechanism. Although sex differences in aromatase activity are clearly documented in the HPOA of Japanese quail (Coturnix japonica), only minimal or even no differences at all were observed in the number of aromatase-immunoreactive (ARO-ir) cells in the medial preoptic nucleus (POM) and in the medial part of the bed nucleus striae terminalis (BSTM).
View Article and Find Full Text PDFJ Chem Neuroanat
January 2003
University of Liège, Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, 17 Place Delcour, B-4020 Liege, Belgium.
In Japanese quail (Coturnix japonica), previous studies indicated that the distribution of reduced nicotinamide dinucleotide phosphate (NADPH) diaphorase overlaps with steroid-sensitive areas that contain dense populations of aromatase-immunoreactive (ARO-ir) cells. We investigated here the anatomical relationships between aromatase (ARO) and nitric oxide synthase (NOS)-containing cells that were visualized both by NOS-immunohistochemistry and NADPH-histochemistry. The distribution of ARO-ir and of NADPH-positive cells in the forebrain observed here matched exactly the distribution previously reported.
View Article and Find Full Text PDFJ Chem Neuroanat
January 2002
Department of Biology, Saint Xavier University, 3700 West 103rd Street, Chicago, IL 60655, USA.
Until recently, it has been difficult to identify the exact location of aromatase containing cells in the brain. The development of new antibodies has provided a sensitive tool to analyze the distribution of aromatase immunoreactive (ARO-ir) material at a cellular level of resolution. In the present study we examined, for the first time, the distribution of ARO-ir cells in the brain of a reptile, the red-sided garter snake, at the beginning of the winter dormancy.
View Article and Find Full Text PDFHorm Behav
November 2001
Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour, B-4020 Liège, Belgium.
Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of aromatase-immunoreactive (ARO-ir) fibers and punctate structures, but no ARO-ir cells are present in this region. The origin of the ARO-ir fibers of the GCt was investigated here by retrograde tract-tracing combined with immunocytochemistry for aromatase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!