The application of chemometric methods to 1H NMR spectroscopic data has been documented for pathophysiological processes. In this study we show the application of 1H NMR-based metabonomics to investigate a relationship between serum metabolic profiles and hypertension. Although hypertension can be defined using blood pressure measurements, the underlying aetiology and metabolic effects are not so readily identified. Serum profiles for patients with low/normal systolic blood pressure (SBP < or = 130 mm Hg; n = 28), borderline SBP (131-149 mm Hg; n = 19) and high SBP (> or = 150 mm Hg; n = 17) were acquired using 1H NMR spectroscopy. Orthogonal signal correction followed by principal components analysis were applied to these NMR data in order to facilitate interpretation, and the resulting chemometric models were validated using Soft Independent Modelling of Class Analogy. Using 1H NMR-based metabonomics, it was possible to distinguish low/ normal SBP serum samples from borderline and high SBP samples. Borderline and high SBP samples, however, were indiscriminate from each other. Our preliminary results showed that there was a relationship between serum metabolic profiles and blood pressure which, in part, was due to lipoprotein particle composition differences between the samples. Furthermore, our results indicated that serum pathology associated with blood pressure is apparent at SBP values > 130 mm Hg, which the WHO and ISH currently define as the limit between normal and high-normal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b209155k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!