Signal transducer and activator of transcription 3 (STAT3) is a key transcriptional mediator for many cytokines and is essential for normal embryonic development. We have generated a unique strain of mice with tissue-specific disruption of STAT3 in bone marrow cells during hematopoiesis. This specific STAT3 deletion causes death of these mice within 4-6 weeks after birth with Crohn's disease-like pathogenesis in both the small and large intestine, including segmental inflammatory cell infiltration, ulceration, bowel wall thickening, and granuloma formation. Deletion of STAT3 causes significantly increased cell autonomous proliferation of cells of the myeloid lineage, both in vivo and in vitro. Most importantly, Stat3 deletion during hematopoiesis causes overly pseudoactivated innate immune responses. Although inflammatory cytokines, including tumor necrosis factor alpha and IFN-gamma, are overly produced in these mice, the NAPDH oxidase activity, which is involved in antimicrobial and innate immune responses, is inhibited. The signaling responses to lipopolysaccharide are changed in the absence of STAT3, leading to enhanced NF-kappa B activation. Our results suggest a model in which STAT3 has critical roles in the development and regulation of innate immunity, and deletion of STAT3 during hematopoiesis results in abnormalities in myeloid cells and causes Crohn's disease-like pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149927PMC
http://dx.doi.org/10.1073/pnas.0237137100DOI Listing

Publication Analysis

Top Keywords

stat3 deletion
12
crohn's disease-like
12
disease-like pathogenesis
12
stat3
10
deletion hematopoiesis
8
innate immunity
8
deletion stat3
8
innate immune
8
immune responses
8
hematopoiesis
4

Similar Publications

Genomic profiling of intimal sarcoma reveals molecular subtypes with distinct tumor microenvironments and therapeutic implications.

ESMO Open

January 2025

Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Electronic address:

Background: Intimal sarcoma is a rare and aggressive soft-tissue sarcoma with limited treatment options. We explored genomic profiles of intimal sarcoma to uncover therapeutic implications.

Materials And Methods: We analyzed tumor tissues from patients with intimal sarcoma who visited the Seoul National University Hospital (SNUH) using whole-exome, whole-transcriptome, and clinical next-generation sequencing (NGS), integrated with intimal sarcoma NGS data from two public cohorts.

View Article and Find Full Text PDF

The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage.

FASEB J

January 2025

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.

View Article and Find Full Text PDF

T helper 17 (Th17) cells are effector cells that mediate inflammatory responses to bacterial and fungal pathogens. While the cytokine signaling inputs required to generate Th17s are established, less is known about intracellular pathways that drive Th17 differentiation. Our previously published phosphoproteomic screen identifies that PIKFYVE, a lipid kinase that generates the phosphatidylinositol PtdIns(3,5)P2, is activated during Th17 differentiation.

View Article and Find Full Text PDF

DNAJB4/HLJ1 deficiency sensitizes diethylnitrosamine-induced hepatocarcinogenesis with peritumoral STAT3 activation.

Cell Biol Toxicol

December 2024

Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Environmental chemicals and toxins are known to impact human health and contribute to cancer developments. Among these, genotoxins induce genetic mutations critical for cancer initiation. In the liver, proliferation serves not only as a compensatory mechanism for tissue repair but also as a potential risk factor for the progression of premalignant lesions.

View Article and Find Full Text PDF

MicroRNA-21 (miR-21) is one of the most frequently upregulated miRNAs in response to kidney ischemia-reperfusion (IR) injury, exhibiting both protective and pathogenic effects depending on the cell type, disease state, and target signaling. In this study, we analyzed the function of miR-21 in various cell types to elucidate its role in ischemia-induced inflammation and acute kidney injury (AKI). Utilizing a mouse model of IR injury, we observed significant upregulation of miR-21 in renal tubular epithelial cells and macrophages following IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!