The purine metabolic gene adenosine deaminase (ADA) is expressed at high levels in a well-defined spatiotemporal pattern in the villous epithelium of proximal small intestine. A duodenum-specific enhancer module responsible for this expression pattern has been identified in the second intron of the human ADA gene. It has previously been shown that binding of the factor PDX-1 is essential for function of this enhancer. The studies presented here examine the proposed roles of GATA factors in the enhancer. Site-directed mutagenesis of the enhancer's GATA binding sites crippled enhancer function in 10 lines of transgenic mice, with 9 of the lines demonstrating <1% of normal activity. Detailed studies along the longitudinal axis of mouse small intestine indicate that GATA-4 and GATA-5 mRNA levels display a reciprocal pattern, with low levels of GATA-6 throughout. Interestingly, gel shift studies with duodenal nuclear extracts showed binding only by GATA-4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00483.2002 | DOI Listing |
Nat Med
May 2015
1] Toronto General Research Institute and Department of Medicine, University Health Network, Toronto, Ontario, Canada. [2] Department of Physiology, University of Toronto, Toronto, Ontario, Canada. [3] Department of Medicine, University of Toronto, Toronto, Ontario, Canada. [4] Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada.
Resveratrol improves insulin sensitivity and lowers hepatic glucose production (HGP) in rat models of obesity and diabetes, but the underlying mechanisms for these antidiabetic effects remain elusive. One process that is considered a key feature of resveratrol action is the activation of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase sirtuin 1 (SIRT1) in various tissues. However, the low bioavailability of resveratrol raises questions about whether the antidiabetic effects of oral resveratrol can act directly on these tissues.
View Article and Find Full Text PDFMol Pharm
February 2015
Key Laboratory of Drug Targeting, Ministry of Education, Sichuan University, No. 17. Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China.
Int J Pharm
July 2011
Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, Sichuan, PR China.
Owing to the quick elimination of drug from duodenum and the depth of Helicobacter pylori (H. pylori) colonized in mucus, antibiotic therapy often fails in the eradication of H. pylori infection for duodenal ulcer.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2007
Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
Reexamination of the Akp3(-/-) mouse intestine showed that, despite the lack of intestinal alkaline phosphatase (IAP), the Akp3(-/-) gut still had considerable alkaline phosphatase (AP) activity in the duodenum and ileum. This activity is due to the expression of a novel murine Akp6 gene that encodes an IAP isozyme expressed in the gut in a global manner (gIAP) as opposed to duodenum-specific IAP (dIAP) isozyme encoded by the Akp3 gene. Phylogenetically, gIAP is similar to the rat IAP I isozyme.
View Article and Find Full Text PDFJ Biol Chem
October 2006
Department of Pediatrics, Division of Developmental Biology, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
An intestine-specific gene regulatory region was previously identified near the second exon of the human adenosine deaminase (ADA) gene. In mammalian intestine, ADA is expressed at high levels only along the villi of the duodenal epithelium, principally if not exclusively in enterocytes. Within the ADA intestinal regulatory region, a potent duodenum-specific enhancer was identified that controls this pattern of expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!