Modulation of intestinal protein synthesis and protease mRNA by luminal and systemic nutrients.

Am J Physiol Gastrointest Liver Physiol

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.

Published: June 2003

Route of nutrient supply is important in regulation of intestinal protein metabolism, because total parenteral nutrition, compared with enteral feeding, leads to profound atrophy. Participation of the fractional rate of protein synthesis (Ks), their degradation in regulation of gut protein balance, and their possible modulation by specific nutrients are the focus of our work. We developed an in situ experimental system that allows controlled exposure of intestinal mucosa to nutrients systemically, luminally, or both. We examined the effects of systemic glucose and amino acid (AA) infusion in overnight-fasted piglets. Jejunal segments within each piglet were simultaneously, luminally perfused with solutions containing various AAs or glucose. Intravenous infusion of glucose increased mucosal Ks by 16% (P < 0.05), whereas intravenous infusion of AA had no effect on Ks. Systemic glucose infusion had no effect on mRNA levels for components of the ubiquitin-proteasome proteolytic pathway. However, levels of these mRNA were reduced by intravenous or luminal AA supply. This effect was greatest (-50%) when highest tissue concentrations of AAs were achieved by the simultaneous infusion of AA by both routes (P < 0.05). Our findings suggest that not only is the modulation of protein balance in the intestine in response to nutrients in part attributable to anabolic stimulation of protein synthesis initiated by the systemic appearance of glucose, but a fall in protein degradation is also a likely contributor. AAs appear to be a key factor required to reduce expression of genes connected with proteolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00402.2002DOI Listing

Publication Analysis

Top Keywords

protein synthesis
12
intestinal protein
8
protein balance
8
systemic glucose
8
intravenous infusion
8
protein
7
glucose
5
infusion
5
modulation intestinal
4
synthesis protease
4

Similar Publications

Design, Synthesis, and Evaluation of Selective PDE4 Inhibitors for the Therapy of Pulmonary Injury.

J Med Chem

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China.

Pulmonary inflammation is the main cause of lung injury. Phosphodiesterase 4 (PDE4) is a promising anti-inflammatory target for the treatment of respiratory diseases. Herein, we designed and synthesized 43 compounds in two novel series of benzimidazole derivatives as PDE4 inhibitors.

View Article and Find Full Text PDF

Antibodies are extensively used in biomedical research, clinical fields, and disease treatment. However, to enhance the reproducibility and reliability of antibody-based experiments, it is crucial to have a detailed understanding of the antibody's target specificity and epitope. In this study, we developed a high-throughput and precise epitope analysis method, DECODE (Decoding Epitope Composition by Optimized-mRNA-display, Data analysis, and Expression sequencing).

View Article and Find Full Text PDF

Light signal regulates endoreduplication and tomato fruit expansion through the SlPIF1a-SlTLFP8-SlCDKB2 module.

Proc Natl Acad Sci U S A

January 2025

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China.

Light serves as an energy source for cell division and expansion during fruit development. Cell expansion significantly influences fruit size and is closely linked to endoreduplication, a unique cell cycle variation characterized by DNA replication without cytokinesis. Paradoxically, under conditions of ample photosynthates, light signaling suppresses cell expansion.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!