A major obstacle in the implementation of the reductive dechlorination process at chloroethene-contaminated sites is the accumulation of the intermediate vinyl chloride (VC), a proven human carcinogen. To shed light on the microbiology involved in the final critical dechlorination step, a sediment-free, nonmethanogenic, VC-dechlorinating enrichment culture was derived from tetrachloroethene (PCE)-to-ethene-dechlorinating microcosms established with material from the chloroethene-contaminated Bachman Road site aquifer in Oscoda, Mich. After 40 consecutive transfers in defined, reduced mineral salts medium amended with VC, the culture lost the ability to use PCE and trichloroethene (TCE) as metabolic electron acceptors. PCE and TCE dechlorination occurred in the presence of VC, presumably in a cometabolic process. Enrichment cultures supplied with lactate or pyruvate as electron donor dechlorinated VC to ethene at rates up to 54 micromol liter(-1)day(-1), and dichloroethenes (DCEs) were dechlorinated at about 50% of this rate. The half-saturation constant (K(S)) for VC was 5.8 microM, which was about one-third lower than the concentrations determined for cis-DCE and trans-DCE. Similar VC dechlorination rates were observed at temperatures between 22 and 30 degrees C, and negligible dechlorination occurred at 4 and 35 degrees C. Reductive dechlorination in medium amended with ampicillin was strictly dependent on H(2) as electron donor. VC-dechlorinating cultures consumed H(2) to threshold concentrations of 0.12 ppm by volume. 16S rRNA gene-based tools identified a Dehalococcoides population, and Dehalococcoides-targeted quantitative real-time PCR confirmed VC-dependent growth of this population. These findings demonstrate that Dehalococcoides populations exist that use DCEs and VC but not PCE or TCE as metabolic electron acceptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC143667 | PMC |
http://dx.doi.org/10.1128/AEM.69.2.996-1003.2003 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Civil and Transport Engineering, Institute of Machines and Motor Vehicles, Poznan University of Technology, 60-965 Poznan, Poland.
In the study of structural materials, the analysis of fracture and deformation resistance plays an important role, particularly in materials widely used in the construction industry, such as poly(vinyl chloride) (PVC). PVC is a popular material used, among others, in the manufacture of window profiles, doors, pipes, and many other structural components. The aim of this research was to define the influence of the degree of milling of the glass-fibre-reinforced composite on the strength of the window frame welds, and in the next step, to propose new welding parameters to obtain sufficient strength properties that allow reducing the cost of the technological welding operation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.
View Article and Find Full Text PDFToxics
December 2024
School of Resource and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
The rapid development of the global chemical industry has led to widespread groundwater contamination, with frequent pollution incidents posing severe threats to water safety. However, there has been insufficient assessment of the health risks posed by chlorinated hydrocarbon contamination in groundwater around chemical industrial parks. This study evaluates the chlorinated hydrocarbon contamination in groundwater at a chemical park and conducts a multi-pathway health risk assessment, identifying the key risk pollutants.
View Article and Find Full Text PDFLangmuir
January 2025
Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.
Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO (Ru/SnO) was prepared with the lattice matching principle. As RuO and SnO are both rutile phases, Ru species were present as highly dispersed RuO particles on the Ru/SnO catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!