The polyheterocyclic strands 1-H and 2-H adopt a helical shape enforced by the pyridine-pyrimidine helicity codon. The crystal structure of 2-H shows the formation of stacks of dimers of right- and left-handed individual helices. Treatment of 1-H and 2-H with silver triflate results in the generation of double-helical entities 1-DH and 2-DH, containing two strands and two silver ions. NMR studies and determination of the crystal structure of 2-DH indicate that the duplex is stabilized by coordination of each Ag(+) ion to two terminal bipyridine units, one from each strand, and by pronounced pi-pi stacking interactions between the internal heterocycles of the strands, yielding a very robust double helical structure. Reversible interconversion of the single and double helix may be achieved by addition of a cryptand capable of sequestering Ag(+) and releasing it by protonation. Thus, successive addition of acid and base leads to reversible interconversion between the shorter ( approximately 3.6 A) single helix and the longer ( approximately 10.3 A) double helix, resulting in the generation of pronounced extension/contraction motion. The system 1,2-H/1,2-DH represents a dynamic chemical device undergoing ionic modulation of reversible molecular mechanical motion fueled by acid/base neutralization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200390085DOI Listing

Publication Analysis

Top Keywords

dynamic chemical
8
1-h 2-h
8
crystal structure
8
reversible interconversion
8
double helix
8
chemical devices
4
devices generation
4
reversible
4
generation reversible
4
reversible extension/contraction
4

Similar Publications

Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission.

View Article and Find Full Text PDF

Informing and engaging all actors in the land sector, including land-owners and managers, researchers, policy-makers and citizens, on the most effective sustainable land-based solutions and behavioural changes is a key strategy for achieving climate change adaptation and mitigation targets at the global as well as at EU and local level. One requisite to support actors in the land sector is to provide them publicly available, reliable and ready-to-use information related to the implementation of Land-based Adaptation and Mitigation Solutions (LAMS). Here we introduce a LAMS catalogue, a collection of meaningful quantitative and qualitative information on 60 solutions characterised according to a set of specifications (e.

View Article and Find Full Text PDF

Water is a critical component in polyelectrolyte anion exchange membranes (AEMs). It plays a central role in ion transport in electrochemical systems. Gaining a better understanding of molecular transport and conductivity in AEMs has been challenged by the lack of a general methodology capable of capturing and connecting water dynamics, water structure, and ionic transport over time and length scales ranging from those associated with individual bond vibrations and molecular reorientations to those pertaining to macroscopic AEM performance.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Z-DNA at the crossroads: untangling its role in genome dynamics.

Trends Biochem Sci

January 2025

Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan. Electronic address:

DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!