Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The trkC locus encodes catalytic and noncatalytic receptors, generated by alternative splicing. These primary high-affinity neurotrophin-3 (NT-3) receptors may act in concert to modulate responsiveness to NT-3. Signal modulation can also be achieved by receptors that are post-translationally processed. We report that the noncatalytic TrkC receptor, TrkCNC2, is cleaved at the membrane-proximal region of its extracellular domain. This generates a soluble ectodomain (gp90(TrkCNC2)) recovered in the cell culture medium and a membrane-bound fragment (p20(TrkCNC2)), which contains the transmembrane and intracellular regions including the juxtamembrane and the NC2-specific cytoplasmic domains. We also show that this processing, which does not occur in the TrkC catalytic counterpart, is upregulated by NT-3 and upon treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Moreover, cleavage inhibition after EDTA or 1.10 phenanthroline treatment suggests involvement of a metalloprotease(s). Finally, this post-translational processing was observed not only in TrkCNC2-overexpressing NIH3T3 cells but also in primary cultures of cortical neurons and brain extracts. This study shows that, in addition to alternative splicing, ectodomain shedding represents a novel means of regulating TrkC receptor signaling, and consequently NT-3 biological effects on target cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1206213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!