The genes involved in the transformation of kidney blastema cells were searched for in avian nephroblastomas induced by the MAV2 retrovirus. The twist gene was identified as a common site of provirus integration in tumor cells. Twist was rearranged by the MAV2 provirus in three out of 76 independent nephroblastoma samples. The MAV2 integration sites were localized within 40 nucleotides of the twist 5'UTR region, right upstream from the ATG initiation codon. The integrated proviruses were deleted at their 5'ends. As a consequence, twist transcription became controlled by the retroviral 3'LTR promoter and was strongly upregulated, more than 200 times. In addition, 2-100 times elevated twist transcription was also detected in the majority of other nephroblastoma samples not containing MAV2 in the twist locus. We propose that chicken nephroblastoma originates from a single blastemic cell in which the MAV retrovirus, through its integration, has deregulated specific combinations of genes controlling proliferation and differentiation. The activation of the twist gene expression appears to contribute to tumorigenesis, as there is an in vivo positive selection of tumor cell clones containing the twist gene hyperactivated by MAV2 sequences inserted within the twist promoter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1206105 | DOI Listing |
J Transl Med
January 2025
Department of Gynecology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).
Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.
Genes (Basel)
December 2024
Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
Unlabelled: In many human rights and criminal contexts, skeletal remains are often the only available samples, and they present a significant challenge for forensic DNA profiling due to DNA degradation. Ancient DNA methods, particularly capture hybridization enrichment, have been proposed for dealing with severely degraded bones, given their capacity to yield results in ancient remains.
Background/objectives: This paper aims to test the efficacy of genome-wide capture enrichment on degraded forensic human remains compared to autosomal STRs analysis.
Biomedicines
January 2025
Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
/: Arterial Tortuosity Syndrome (ATS) is a rare, autosomal recessive connective tissue disorder characterized by arterial twists, abnormal bulges, constriction, and tears. Patients have distinctive features and disease manifestations. The syndrome's full clinical spectrum and course remain incompletely understood.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
Background: The high mortality rate of metastatic colorectal cancer (CRC) is primarily attributed to resistance to chemotherapy, where cancer stem cells (CSCs) play a crucial role. Deubiquitinating enzymes are essential regulators of CSC maintenance, making them potential targets for eliminating CSCs and overcoming chemotherapy resistance. This study aims to identify key deubiquitinating enzymes regulating CSCs and drug resistance of CRC.
View Article and Find Full Text PDFWorld J Mens Health
January 2025
Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
Purpose: In recent years, many genes have been associated with male infertility; however, testing of monogenic forms has not yet been clinically implemented in the diagnosis of severe forms of idiopathic male infertility, as the diagnostic utility has not been established yet. The aim of this study was therefore to answer if the implementation of genetic testing for monogenic forms of male infertility could contribute to the clinical diagnosis of men with severe forms of idiopathic male infertility.
Materials And Methods: Based on the ClinGene curation protocol, we defined a panel of genes with sufficient evidence for the involvement with severe male infertility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!