The tnaT gene of Symbiobacterium thermophilum encodes a protein homologous to sodium-dependent neurotransmitter transporters. Expression of the tnaT gene product in Escherichia coli conferred the ability to accumulate tryptophan from the medium and the ability to grow on tryptophan as a sole source of carbon. Transport was Na(+)-dependent and highly selective. The K(m) for tryptophan was approximately 145 nm, and tryptophan transport was unchanged in the presence of 100 microM concentrations of other amino acids. Tryptamine and serotonin were weak inhibitors with K(I) values of 200 and 440 microM, respectively. By using a T7 promoter-based system, TnaT with an N-terminal His(6) tag was expressed at high levels in the membrane and was purified to near-homogeneity in high yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M206563200 | DOI Listing |
Int J Mol Sci
July 2024
Division of Diabetes and Nutrition, RARiS, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Miyagi, Japan.
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and β-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid.
View Article and Find Full Text PDFDiscov Med
May 2024
Second Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China.
Cardiovascular disease stands as the leading cause of death globally, with hypertension emerging as an independent risk factor for its development. The worldwide prevalence of hypertension hovers around 30%, encompassing a staggering 1.2 billion patients, and continues to escalate annually.
View Article and Find Full Text PDFBiomaterials
July 2024
BK21 Program, Department of Applied Life Science, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea. Electronic address:
Catechol-based biomaterials demonstrate biocompatibility, making them suitable for a wide range of therapeutic applications when integrated into various molecular frameworks. However, the development of orally available catechol-based biomaterials has been hindered by significant pH variations and complex interactions in the gastrointestinal (GI) tract. In this study, we introduce a novel catechol-modified bile acid (CMBA), which is synthesized by anchoring the FDA-approved drug, ursodeoxycholic acid to the neurotransmitter dopamine.
View Article and Find Full Text PDFACS Chem Neurosci
March 2024
Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México 07360, Mexico.
Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult.
View Article and Find Full Text PDFMol Genet Metab
May 2024
Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!