1 The human 5-HT(2C) receptor, when expressed heterologously in various mammalian cell lines (HEK293, SH-EP and NIH-3T3) at various receptor densities (6 to 45 pmol mg(-1) protein), mediates robust agonist-induced GTPgamma(35)S binding from coupling to G(i) subtypes of G proteins, in addition to G(q/11). Such a phenotype, however, was not seen with the human 5-HT(2A) and 5-HT(2B) receptors, indicating their common pathway with 5-HT(2C) limited to G(q/11), not including G(i). 2 Because intracellular regions are largely responsible for signalling pathways, we prepared the chimeras of the 5-HT(2A) and 5-HT(2B) receptors where the second and third intracellular loops, and the C-terminal region were replaced with the 5-HT(2C) counterparts. 3 The chimeras showed robust agonist-induced GTPgamma(35)S binding. Relative intrinsic efficacies of agonists from the GTPgamma(35)S binding were nearly identical to the reported values for their parent receptors as measured with Ca(2+) or [(3)H]-inositol phosphate accumulation. Also the chimeras displayed the same ligand-binding properties as the parent receptors. 4 We conclude that the phenotype of agonist-induced GTPgamma(35)S binding is unique to 5-HT(2C) among the 5-HT(2) receptor family, and is transferable to 5-HT(2A) and 5-HT(2B), upon swapping intracellular sequences, without altering their receptor pharmacology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573684 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!