In an effort to elucidate the role of ligand conformation in induced protein dimerization, we synthesized a flexible methotrexate (MTX) dimer, demonstrated its ability to selectively dimerize Escherichia coli dihydrofolate reductase (DHFR), and evaluated the factors regulating its ability to induce cooperative dimerization. Despite known entropic barriers, bis-MTX proved to possess substantial conformational stability in aqueous solution (-3.8 kcal/mol >/= DeltaG(fold) >/= -4.9 kcal/mol), exerting a dominant influence on the thermodynamics of dimerization. To dimerize DHFR, bis-MTX must shift from a folded to an extended conformation. From this conclusion, the strength of favorable protein-protein interactions in bis-MTX-E. coli DHFR dimers (-3.1 kcal/mol >/= DeltaG(c) >/= -4.2 kcal/mol), and the selectivity of dimerization for E. coli DHFR relative to mouse DHFR (>10(7)) could be determined. The crystal structure of bis-MTX in complex with E. coli DHFR confirms the feasibility of a close-packed dimerization interface and suggests a possible solution conformation for the induced protein dimers. Consequently, the secondary structure of this minimal foldamer regulates its ability to dimerize dihydrofolate reductase in solution, providing insight into the complex energy landscape of induced dimerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja026264y | DOI Listing |
Int J Biol Macromol
January 2025
Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
A dihydrofolate reductase (DHFR)-like enzyme from Leptospira interrogans (LiDHFRL) was cloned and the recombinant protein was characterized. Sequence alignment suggested that the enzyme lacked the conserved catalytic residues found in DHFR. Indeed, LiDHFRL did not catalyze the reduction of dihydrofolate by either NADH or NADPH.
View Article and Find Full Text PDFBMC Chem
December 2024
Laboratory of Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
Dihydrofolate reductase (DHFR) is an enzyme that plays a crucial role in folate metabolism, which is essential for cell growth and division. DHFR has been identified as a molecular target for numerous diseases due to its significance in various biological processes. DHFR inhibitors can disrupt folate metabolism by inhibiting DHFR, leading to the inhibition of cell growth.
View Article and Find Full Text PDFComput Biol Chem
November 2024
Department of Chemistry, Faculty of Engineering and Technology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751030, India. Electronic address:
In this study 1-vinyl-3-alkyl imidazolium-based ionic liquid monomers (ILs) with different alkyl chain lengths {R = hexyl (A), octyl (B) and decyl (C)} have been synthesized for antibacterial applications. The prepared ILs have been characterized using UV, FT-IR and NMR spectroscopy. The antibacterial activities of the synthesized ILs against Staphylococcus aureus (S.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Boys), Al-Azhar University, Assiut 71524, Egypt.
A series of 1,2,4-triazolo[1,5-]pyrimidine-based derivatives were developed and prepared by reacting chalcones - with 3-phenyl-1,2,4-triazole-5-amine (). The novel compounds were analyzed using several spectroscopic techniques, and their antimicrobial efficacies against six pathogens (Gram-negative, Gram-positive, and fungi) were tested. Most of the tested compounds exhibited significant antimicrobial activity compared to ciprofloxacin and fluconazole.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Integral University, Lucknow, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!