The Bangladesh arsenic catastrophe: clinical manifestations.

Trop Doct

Public Health Sciences Division, ICDDR'B (Centre for Health and Population Research), GPO Box 128, Mohakhali C/A, Dhaka 1000, Bangladesh.

Published: January 2003

Download full-text PDF

Source
http://dx.doi.org/10.1177/004947550303300121DOI Listing

Publication Analysis

Top Keywords

bangladesh arsenic
4
arsenic catastrophe
4
catastrophe clinical
4
clinical manifestations
4
bangladesh
1
catastrophe
1
clinical
1
manifestations
1

Similar Publications

This study addresses the pervasive issue of particulate matter (PM) emission in urban areas, proposing a better approach using scanning electron microscope (SEM) techniques to identify plant species effective in airborne PM removal. Conducted in Bilaspur city, the research strategically selected six plant species across four distinct sites and applied the SEM-Image J method for analysis, yielding significant insights, especially in the respirable PM range. Among the tested plant species, Senna Siamea and Dalbergia Sissoo emerged as consistent and standout performers, displaying the highest PM removal efficiency across all sites.

View Article and Find Full Text PDF

The increasing demand for sustainable, robust, and cost-efficient arsenic (As) treatment techniques strengthens the implementation of new constructed wetland (CW) designs like aerated CWs in the agricultural sector. The aim was to assess and contrast the influence of various aeration rates on As elimination in subsurface flow CW utilizing plants for treating As-polluted sand. This study consisted of an experiment with 16 subsurface flow CW, operating at different As concentrations of 0, 5, 22, and 39 mg kg and aeration rates of 0, 0.

View Article and Find Full Text PDF

Distribution of potentially toxic elements in sediments of the municipal river channel (Balu), Dhaka, Bangladesh: Ecological and health risks assessment.

J Contam Hydrol

January 2025

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health.

View Article and Find Full Text PDF

The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications.

View Article and Find Full Text PDF

Shipbreaking is an extremely profitable business; however, it simultaneously destroys the surrounding environment. The discharge of toxic chemicals and materials containing wastes is contaminating surrounding water. However, there is still no sufficient published information particularly focusing on shipbreaking yard (SBY) water quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!