Drug releasing porous poly(epsilon-caprolactone) (PCL)-chitosan matrices were fabricated for bone regenerative therapy. Porous matrices made of biodegradable polymers have been playing a crucial role as bone substitutes and as tissue-engineered scaffolds in bone regenerative therapy. The matrices provided mechanical support for the developing tissue and enhanced tissue formation by releasing active agent in controlled manner. Chitosan was employed to enhance hydrophilicity and biocompatibility of the PCL matrices. PDGF-BB was incorporated into PCL-chitosan matrices to induce enhanced bone regeneration efficacy. PCL-chitosan matrices retained a porous structure with a 100-200 microm pore diameter that was suitable for cellular migration and osteoid ingrowth. NaHCO3 as a porogen was incorporated 5% ratio to polymer weight to form highly porous scaffolds. PDGF-BB was released from PCL-chitosan matrices maintaining therapeutic concentration for 4 week. High osteoblasts attachment level and proliferation was observed from PCL-chitosan matrices. Scanning electron microscopic examination indicated that cultured osteoblasts showed round form and spread pseudopods after 1 day and showed broad cytoplasmic extension after 14 days. PCL-chitosan matrices promoted bone regeneration and PDGF-BB loaded matrices obtained enhanced bone formation in rat calvarial defect. These results suggested that the PDGF-BB releasing PCL-chitosan porous matrices may be potentially used as tissue engineering scaffolds or bone substitutes with high bone regenerative efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF03179936 | DOI Listing |
Int J Biomater
March 2023
Materials Engineering Department, University of Technology, Baghdad, Iraq.
There is a critical need in orthopedic and orthodontic clinics for enhanced implant-bone interface contact to facilitate the quick establishment of a strong and durable connection. Surface modification by bioactive multifunctional materials is a possible way to overcome the poor osteoconductivity and the potential infection of Ti-based implants. Ti-25Zr biometallic alloy was prepared by powder metallurgy technique and then coated by Nano-composite fiber using electrospinning.
View Article and Find Full Text PDFSci Rep
September 2021
Department of Ophthalmology, University Medical Center Rostock, Doberaner Str. 140, 18057, Rostock, Germany.
Posterior lamellar transplantation of the eye' s cornea (DSAEK, DMEK) currently is the gold standard for treating patients with corneal endothelial cell and back surface pathologies resulting in functional impairment. An artificial biomimetic graft carrying human corneal endothelium could minimize the dependency on human donor corneas giving access to this vision-restoring surgery to large numbers of patients, thus reducing current long waiting lists. In this study, four groups of electrospun nanofibrous scaffolds were compared: polycaprolactone (PCL), PCL/collagen, PCL/gelatin and PCL/chitosan.
View Article and Find Full Text PDFBiomater Sci
January 2018
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai - 400076, India.
The development of a cell-growth substrate that provides a nature-like microenvironment, promotes cell adhesion, and maintains the cells' functional activities is a research focus in the field of tissue engineering. In the present study, three-dimensional micro-nano multiscale fiber-based substrates were developed by depositing biocompatible polycaprolactone (PCL)/PCL-Chitosan (C)/PCL-C-Gelatin (G) electrospun nanofibers (NFs) on the outer surface of hollow fiber membranes (HFMs) in one step. A comparison study with regard to physico-chemical characterization, hemocompatibility, cytotoxicity, and cellular functionality was performed with the developed matrices.
View Article and Find Full Text PDFScaffold architecture, surface topography, biochemical and mechanical cues have been shown to significantly improve cellular events and in vivo tissue regeneration. Specifically electrospun nanofiber matrices have gained tremendous interest due to their intrinsic structural resemblance to native tissue extracellular matrix (ECM). The present study reports on the electrospun nanofiber matrices of polycaprolactone (PCL)-chitosan (CS) blends and effect of type I collagen surface functionalization in regulating rat bone marrow derived stromal cells (rBMSCs) differentiation into osteogenic lineage.
View Article and Find Full Text PDFJ Biomater Tissue Eng
August 2013
Department of Chemistry, Chemical Biology and Biomedical Engineering Stevens Institute of Technology, Hoboken, NJ, 07030.
Large-gap peripheral nerve injuries present a significant challenge for nerve regeneration due to lack of suitable grafts, insufficient cell penetration, and repair. Biomimetic nanofibrous scaffolds, functionalized on the surface with extracellular matrix proteins, can lead to novel therapies for repair and regeneration of damaged peripheral nerves. Here, nanofibrous scaffolds electrospun from blends of poly(caprolactone) (PCL) and chitosan were fabricated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!