Odor concentration decay and stability in gas sampling bags.

J Air Waste Manag Assoc

OdourNet UK Ltd., Wiltshire, United Kingdom.

Published: January 2003

This paper presents results of an experimental study into factors contributing to decay of odor samples during storage, between 4 and 40 hr after sample collection. The odor studied was sampled from a tobacco processing plant as part of collaborative research with a view to establishing a manual outlining methods for odor annoyance management, specifically for the tobacco industry. In August and September 1997, an experimental program was carried out in which two types of tobacco odor were sampled: Burley Toaster and Mix. The dependent variable was odor concentration in the bag, measured by dynamic olfactometry in accordance with the draft Comité Européen de Normalisation (CEN) standard EN13725 "Air Quality-Determination of Odor Concentration by Dynamic Olfactometry." The independent variables were sampling bag material, degree of dilution during sampling, dilution gas used, particle removal during sampling, and age of sample in hours. In the first phase, 94 odor analyses were carried out. In a second test, 32 samples were analyzed for odor concentration. In addition, 16 samples were analyzed using gas chromatography-mass spectrometry (GC-MS). Analysis of the results (analysis of variance) led to the unexpected conclusion that Nalophan film bags performed significantly better than metalized Cali-Bond layered film as a bag material. The odor concentration of samples in Nalophan bags remained relatively stable between 4 and 12 hr after sampling. After 30 hr, decay to about half the initial concentration, as measured at 4 hr, was observed. Particle removal during sampling caused the odor concentration in the bags to be reduced by approximately 20%. For practical reasons, particle removal remains useful, to avoid contamination of equipment. Using air or nitrogen as the neutral gas for pre-dilution during sampling or the dilution factor used (between factor 2 and 6) did not appear to have an effect on the decay characteristic of odor samples. The following recommendations are suggested for the practice of collecting odor samples and apply specifically to tobacco processing emissions: Analyze samples as soon as possible, preferably within 12 hr; When samples age for more than 12 hr, decay is likely to cause a reduction in odor concentration to half the original concentration at age 30 hr; Use sampling bags made of Nalophan NA or benchmark performance of other materials against Nalophan NA before using alternative materials; Use pre-dilution when sampling only for the purpose of avoiding condensation during sample storage. Use an appropriate minimum dilution factor to avoid condensation; Both nitrogen and high-purity (synthetic) air are suitable to use as neutral gas for pre-dilution; and When sampling tobacco odors, use an odorless filter to remove particles. This practice removes a source of variation and avoids contamination of equipment. The effect on results, despite being consistently lower in odor concentration, is not meaningful in terms of perceived intensity or annoyance potential.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2003.10466121DOI Listing

Publication Analysis

Top Keywords

odor concentration
32
odor
15
odor samples
12
particle removal
12
pre-dilution sampling
12
sampling
10
concentration
9
sampling bags
8
samples
8
tobacco processing
8

Similar Publications

A critical review of microbial profiles in black and odorous waters.

Environ Res

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China. Electronic address:

Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive.

View Article and Find Full Text PDF

Impacts of ammoniacal odour removal bioagent on air bacterial community.

Adv Biotechnol (Singap)

February 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.

While biotechnologies offer eco-friendly solutions for eliminating air contaminants, there is a scarcity of research examining the impacts of microbial purification of air pollutants on the structure and function of air microbial communities. In this study, we explored a Lactobacillus paracasei B1 (LAB) agent for removing ammoniacal odour. The impacts of LAB on air bacterial community were revealed.

View Article and Find Full Text PDF

Lemongrass (Poaceae) is one of the aromatic plants with strong odors. Traditionally, lemon grass oil has been used for the treatment of many diseases such as gastrointestinal cramps, high blood pressure, high body temperatures, and fatigue, and is also considered an antibacterial and anti-diarrheal agent. Therefore, this study aims to investigate volatile active constituents and a few important biological activities of the volatile oil of lemongrass (Cymbopogon citratus) grown in Oman.

View Article and Find Full Text PDF

Background: Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices.

View Article and Find Full Text PDF

Biofiltration for odor mitigation in water resource recovery facilities.

Sci Total Environ

January 2025

Department of Civil Engineering, City College of New York, New York, NY 10031, United States.

Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!