Holoprosencephaly (HPE) is the most common developmental defect of the forebrain and midface in humans, with a frequency of 1/16,000 live births. Different genes are implicated in the pathogenesis of HPE; these include SHH, ZIC2, SIX3, TGIF, and human DKK1. We describe here a family with recurrence of autosomal dominant HPE in different members showing a wide clinical variability. The mother presents a single central maxillary incisor and mild hypotelorism as signs of the diseases, while three of her sons were affected by HPE. By direct sequencing and restriction analysis of exon 2 of the SHH gene, we have identified a previously undescribed nonsense mutation at codon 128 (W128X). The identification of this mutation allowed us to give a prenatal diagnosis in this family and confirms a wide intrafamilial variability in the phenotypic spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.10163 | DOI Listing |
J Neurosci
November 2024
Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
How master splicing regulators crosstalk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as and Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in Simultaneous ablation of in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
How master splicing regulators crosstalk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq of the developing neocortex uncover that transcription regulators are enriched for differential splicing, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glia progenitors induces neuronal splicing events preferentially in transcription regulators such as and .
View Article and Find Full Text PDFBr J Dermatol
October 2024
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Background: Lipid metabolism has essential roles in skin barrier formation and the regulation of skin inflammation. Lipid homeostasis regulates skin melanogenesis, although the underlying mechanism remains largely unknown. Sterol regulatory element binding protein 1 (SREBP-1) is a key transcription factor essential for cellular lipid metabolism.
View Article and Find Full Text PDFJ Clin Transl Endocrinol
June 2024
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
Cystic fibrosis (CF) has been traditionally viewed as a disease that affects White individuals. However, CF occurs among all races, ethnicities, and geographic ancestries. The disorder results from mutations in the ().
View Article and Find Full Text PDFBMC Pediatr
February 2024
Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
Background: Mitochondrial diseases are heterogeneous in terms of clinical manifestations and genetic characteristics. The dynamin 1-like gene (DNM1L) encodes dynamin-related protein 1 (DRP1), a member of the GTPases dynamin superfamily responsible for mitochondrial and peroxisomal fission. DNM1L variants can lead to mitochondrial fission dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!