Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structurally, the simplest amino acid is glycine, and it has a number of important yet distinct functions in the body. This review focuses on the different transport systems and the associated carrier proteins for glycine that are responsible for its movement across biological membranes. Transport proteins in the class GLYT appear to be the most specific for glycine. However, the B0+ system also carries significant amounts of glycine. Other amino acid transport systems capable of carrying small amounts of glycine are ASC, asc and system L. In addition, an ATP-dependent transport process exists that takes up glycine into synaptic vesicles at nerve endings. This is known as the vesicular inhibitory amino acid transporter since, in addition to glycine, it can transport possibly two other inhibitory neurotransmitters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02255994 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!