The Kv2.1 potassium channel contains a lysine in the outer vestibule (position 356) that markedly reduces open channel sensitivity to changes in external [K(+)]. To investigate the mechanism underlying this effect, we examined the influence of this outer vestibule lysine on three measures of K(+) and Na(+) permeation. Permeability ratio measurements, measurements of the lowest [K(+)] required for interaction with the selectivity filter, and measurements of macroscopic K(+) and Na(+) conductance, were all consistent with the same conclusion: that the outer vestibule lysine in Kv2.1 interferes with the ability of K(+) to enter or exit the extracellular side of the selectivity filter. In contrast to its influence on K(+) permeation properties, Lys 356 appeared to be without effect on Na(+) permeation. This suggests that Lys 356 limited K(+) flux by interfering with a selective K(+) binding site. Combined with permeation studies, results from additional mutagenesis near the external entrance to the selectivity filter indicated that this site was located external to, and independent from, the selectivity filter. Protonation of a naturally occurring histidine in the same outer vestibule location in the Kv1.5 potassium channel produced similar effects on K(+) permeation properties. Together, these results indicate that a selective, functional K(+) binding site (e.g., local energy minimum) exists in the outer vestibule of voltage-gated K(+) channels. We suggest that this site is the location of K(+) hydration/dehydration postulated to exist based on the structural studies of KcsA. Finally, neutralization of position 356 enhanced outward K(+) current magnitude, but did not influence the ability of internal K(+) to enter the pore. These data indicate that in Kv2.1, exit of K(+) from the selectivity filter, rather than entry of internal K(+) into the channel, limits outward current magnitude. We discuss the implications of these findings in relation to the structural basis of channel conductance in different K(+) channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2217329 | PMC |
http://dx.doi.org/10.1085/jgp.20028756 | DOI Listing |
J Craniofac Surg
October 2024
Department of Plastic Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
High-velocity lateral impacts to the nose sometimes cause nasal buckle-out fractures with a trapdoor buckle-out segment displaced outwards. Prolonged immobilization of a reduced buckle-out segment at risk for outward redisplacement remains challenging. Here we introduce a novel method of intranasal outer cortex splinting with a Kirshner (K)-wire to reinforce the reduced state and prevent outward re-displacement of the buckle-out segment.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China. Electronic address:
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.
View Article and Find Full Text PDFSci Rep
November 2024
Research and Development, MED-EL, Innsbruck, Austria.
Estimation of cochlear length is gaining attention in the field of cochlear implants (CIs), mainly for selecting of CI electrode lengths. The currently available tools to estimate the cochlear duct length (CDL) are only valid for normal inner anatomy. However, inner ear malformation (IEM) types are associated with different degrees of cystic apices, limiting the application of CDL equations of normal anatomy inner ear.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.
A broad chemical genetics screen in to identify inhibitors of established or previously untapped targets for therapeutic development yielded compounds (BRD-8000.3 and BRD-9327) that inhibit the essential efflux pump EfpA. To understand the mechanisms of inhibition by these compounds, we determined the structures of EfpA with inhibitors bound at 2.
View Article and Find Full Text PDFZhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
August 2024
Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan 250022, China.
To summarize the HRCT and MRI appearances of stapical footplate fistula related to inner ear malformation (SFF-Re-IEM). The HRCT and MRI materials of 48 cases (53 ears) SFF-Re-IEM were retrospectively analyzed. Among them, 25 SFF-Re-IEM ears were confirmed by surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!