Objective: Phosphorylation of the myosin light chain 2 (MLC-2) isoform expressed as a percentage of total MLC-2 was decreased in failing (21.1+/-2.0%) compared to donor (31.9+/-4.8%) hearts. To assess the functional implications of this change, we compared the effects of MLC-2 dephosphorylation on force development in failing and non-failing (donor) human hearts.
Methods: Cooperative effects in isometric force and rate of force redevelopment (K(tr)) were studied in single Triton-skinned human cardiomyocytes at various [Ca(2+)] before and after protein phosphatase-1 (PP-1) incubation.
Results: Maximum force and K(tr) values did not differ between failing and donor hearts, but Ca(2+)-sensitivity of force (pCa(50)) was significantly higher in failing myocardium (Deltap Ca(50)=0.17). K(tr) decreased with decreasing [Ca(2+)], although this decrease was less in failing than in donor hearts. Incubation of the myocytes with PP-1 (0.5 U/ml; 60 min) decreased pCa(50) to a larger extent in failing (0.20 pCa units) than in donor cardiomyocytes (0.10 pCa units). A decrease in absolute K(tr) values was found after PP-1 in failing and donor myocytes, while the shape of the K(tr)-Ca(2+) relationships remained unaltered.
Conclusions: Surprisingly, the contractile response to MLC-2 dephosphorylation is enhanced in failing hearts, despite the reduced level of basal MLC-2 phosphorylation. The enhanced response to MLC-2 dephosphorylation in failing myocytes might result from differences in basal phosphorylation of other thin and thick filament proteins between donor and failing hearts. Regulation of Ca(2+)-sensitivity via MLC-2 phosphorylation may be a potential compensatory mechanism to reverse the detrimental effects of increased Ca(2+)-sensitivity and impaired Ca(2+)-handling on diastolic function in human heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6363(02)00662-4 | DOI Listing |
PLoS One
December 2023
Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
Alveolar barrier dysfunction is one of the major pathophysiological changes in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). In ALI/ARDS, tumor necrosis factor-alpha (TNFα) disrupts the barriers of alveolar epithelium and endothelium. Glucocorticoids (GCs) exert anti-inflammatory effects and ameliorate pulmonary edema in ALI/ARDS.
View Article and Find Full Text PDFCardiovasc Res
February 2003
Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
Objective: Phosphorylation of the myosin light chain 2 (MLC-2) isoform expressed as a percentage of total MLC-2 was decreased in failing (21.1+/-2.0%) compared to donor (31.
View Article and Find Full Text PDFCardiovasc Res
January 2003
Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
Objective: The alterations in contractile proteins underlying enhanced Ca(2+)-sensitivity of the contractile apparatus in end-stage failing human myocardium are still not resolved. In the present study an attempt was made to reveal to what extent protein alterations contribute to the increased Ca(2+)-responsiveness in human heart failure.
Methods: Isometric force and its Ca(2+)-sensitivity were studied in single left ventricular myocytes from non-failing donor (n=6) and end-stage failing (n=10) hearts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!