Saxitoxins, the etiological agent of paralytic shellfish poisoning, are synthesized by dinoflagellates and cyanobacteria. Several reports indicate that bacteria are capable of saxitoxin synthesis. Two bacterial strains were isolated from saxitoxin-producing dinoflagellates, Alexandrium tamarense and A. lusitanicum (=Alexandrium minutum), and grown under a variety of culture conditions including those previously reported to induce saxitoxin synthesis in bacteria. Five fluorescent compounds were accumulated by the bacteria that had HPLC-FLD retention times similar to a reference standard of GTX(4), one of the saxitoxin congeners. However, we were unable to detect GTX(1), the epimeric partner of GTX(4), in the bacterial samples. The GTX(4) standard was hydrolyzed by NaOH/heat treatment but four of the bacterial compounds were stable. Unlike GTX(4), none of the five bacterial compounds were detectable by HPLC-FLD following electrochemical oxidation. The fluorescence emission spectrum of each of the five bacterial compounds was unique and readily discernable from the spectrum of GTX(4). None of the samples containing the putative GTX(4) toxin yielded positive results when analyzed by a 3H-saxitoxin receptor-binding assay for saxitoxin-like activity. We cannot rule out the possibility that these bacteria produce saxitoxins, however, our data clearly demonstrate that they accumulate at least five different fluorescent compounds that could be easily mistaken for GTX(4). We conclude that these five fluorescent compounds are GTX(4) imposters and that fluorescence scanning and chemical/heat stability should, at a minimum, be incorporated into HPLC-FLD protocols for identification of saxitoxins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0041-0101(02)00314-8DOI Listing

Publication Analysis

Top Keywords

fluorescent compounds
16
bacterial compounds
12
gtx4
9
gtx4 imposters
8
saxitoxin synthesis
8
gtx4 bacterial
8
compounds
7
bacterial
5
imposters characterization
4
fluorescent
4

Similar Publications

Background: Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood.

View Article and Find Full Text PDF

Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.

View Article and Find Full Text PDF

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: As digestive health issues rise and interest in natural therapies grows, traditional herbs like Cassia Seed are gaining attention for their antioxidant, laxative, and digestive benefits.

Aim Of The Study: This study aimed to optimize the fermentation conditions of Cassia seed using microbial technology to enhance the content of anthraquinone compounds, thereby augmenting its pharmacological effects, particularly in promoting intestinal peristalsis and alleviating constipation.

Materials And Methods: Fermentation of Cassia Seed was conducted under controlled microbial conditions.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) can effectively attenuate heavy metal mobility in aquatic ecosystems and reduce metal toxicity to cells. However, a systematic study of microalgae EPS responses and their adsorption behaviors, characteristics, and mechanisms under different heavy metal exposures has not been performed. In this study, EPS extracted from Chlamydomonas reinhardtii CC-125 was analyzed for compositional changes (monosaccharides and proteins) under Cd, Cu, Pb, and Zn treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!