Nonribosomal peptide synthetases (NRPSs) make many natural products of clinical importance, but a deeper understanding of the protein domains that compose NRPS assembly lines is required before these megasynthetases can be effectively engineered to produce novel drugs. The N-terminal amide bond-forming condensation (C) domain of the enterobactin NRPS EntF was excised from the multidomain synthetase using endpoints determined from sequence alignments and secondary structure predictions. The isolated domain was well-folded when compared by circular dichroism to the vibriobactin NRPS VibH, a naturally free-standing C domain. The EntF domain was also fully functional in an assay based on a synthetic small-molecule substrate, seryl N-acetylcysteamine. Active site mutants of the EntF C domain were surprisingly inactive in vitro as compared to their VibH counterparts, yet maintained the overall domain structure. An in vivo assay was developed in the context of the full-length EntF protein to more sensitively probe the activity level of the C domain mutants, and this supported strong effects for the active site mutations. The crucial role of histidine-138 was confirmed by assay of the full-length protein in vitro. These results suggest a strong resemblance of catalysis by the EntF C domain to chloramphenicol acetyltransferase, including an active site organized by an arginine-aspartate salt bridge, a key histidine acting as a general base, and an asparagine instead of a serine stabilizing the proposed tetrahedral intermediate by hydrogen bonding. The precise definition of a functional C domain excised from a NRPS should aid efforts at swapping NRPS domains between assembly lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi026867m | DOI Listing |
Transcription
January 2025
Department of Chemistry, University of Toronto, Mississauga, ON, Canada.
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Syngenta, Bioscience, Jealott's Hill Research Centre.
Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).
View Article and Find Full Text PDFHeliyon
January 2025
Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
Plastic pollution is a worrying problem, and its degradation is a laborious process. Although enzymatic plastic breakdown is a sustainable method, drawbacks such as numerous plastic kinds of waste make the degradation challenging. Therefore, a multi-plastic degrading (MPD) enzyme becomes necessary.
View Article and Find Full Text PDFTrends Chem
November 2024
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States.
BURP domain peptide cyclases, or BpCs (an abbreviation we recommend in this opinion), are an emerging class of copper enzymes which catalyze the oxidative macrocyclization of peptides in plants. A close examination of their novel protein fold, along with the unique dicopper active site that meticulously controls crosslinking within peptides, highlights how nature exploits intricate mechanistic strategies to achieve diverse functionalities. Here, we summarize recent discoveries regarding the sequence, structure, function, and proposed chemistry of BpCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!