Cuticular hydrocarbons were extracted from workers of 63 different nests of five species of Tetramorium ants (Hymenoptera: Formicidae) from Austria, Hungary, and Spain. The GC-MS data were classified (data mining) by self-organizing maps (SOM). SOM neurons derived from primary neuron separation were subjected to hierarchical SOM (HSOM) and were grouped to neuron areas on the basis of vicinity in the hexagonal output grid. While primary neuron separation and HSOM resulted in classifications on a level more sensitive than species differences, neuron areas resulted in chemical phenotypes apparently of the order of species. These chemical phenotypes have implications for systematics: while the chemical phenotypes for T. ferox and T. moravicum correspond to morphological determination, in T. caespitum and T. impurum a total of six chemical phenotypes is found. Three hypotheses are discussed to explain this disparity between morphological and chemical classifications, including in particular the possibility of hybridization and the existence of cryptic species. Overall, the GC-MS profiles classified by SOM prove to be a practical alternative to morphological determination (T. ferox, T. moravicum) and indicate the need to revisit systematics (T. caespitum, T. impurum).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1021496305308 | DOI Listing |
BMC Plant Biol
January 2025
Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya, 42310, Türkiye.
Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.
Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.
Nat Commun
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:
Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.
View Article and Find Full Text PDFEnviron Res
January 2025
Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!