Water contamination due to the wide variety of pesticides used in agriculture practices is a global environmental pollution problem. The 98/83 European Directive requires the measurement of pesticides residues at a target concentration of 1.0 microg/l in surface water and 0.1 microg/l in drinking water. In order to reach the level of detection required, efficient extraction techniques are necessary. The application of a new extraction technique: single-drop microextraction (SDME), followed by gas chromatography with electron-capture detection, was assessed for determining alpha-endosulfan and beta-endosulfan in water samples. Experimental parameters which control the performance of SDME, such as selection of microextraction solvent and internal standard, optimization of organic drop volume, effects of sample stirring, temperature and salt addition, and sorption time profiles were studied. Once SDME was optimized, analytical parameters such as linearity, precision, detection and quantitation limits, plus matrix effects were evaluated. The SDME method was compared with solid-phase microextraction and solid-phase extraction with the aim of selecting the most appropriate method for a certain application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(02)01873-3DOI Listing

Publication Analysis

Top Keywords

single-drop microextraction
8
solid-phase microextraction
8
microextraction solid-phase
8
solid-phase extraction
8
beta-endosulfan water
8
water samples
8
microextraction
5
water
5
application single-drop
4
microextraction comparison
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!