Use of dynamically coated capillaries with added cyclodextrins for the analysis of opium using capillary electrophoresis.

J Chromatogr A

US Drug Enforcement Administration, Special Testing and Research Laboratory, 22624 Dulles Summit Court, Dulles, VA 20166, USA.

Published: January 2003

A rapid, precise, accurate, and robust method using capillary electrophoresis (CE) with dynamically coated capillaries for the analysis of the major opium alkaloids in opium is presented. Dynamic coating of the capillary surface is accomplished using a commercially available reagent kit (polycation coating followed by polyanion coating). The addition of dual cyclodextrins (hydroxypropyl-beta-cyclodextrin and dimethyl-beta-cyclodextrin) to the run buffer imparts excellent selectivity for the opium alkaloids. For the determination of morphine, papaverine, codeine, noscapine and thebaine in opium gum and opium latex samples (using tetracaine as an internal standard) good agreement with values obtained by gradient high-performance liquid chromatography is obtained. Compared to the latter technique, CE affords better resolution with significantly faster analysis time (12 min versus 29 min). Dynamically coated capillaries, which give rise to a relatively high and robust electroosmotic flow (EOF) at the background electrolyte pH of 2.5, allow for rapid analysis and excellent migration time and peak area precision (RSDs < or = 0.12% and < or = 1.2%, respectively). Reproducible separations (relative migration times) for over 500 samples have been obtained on a single capillary. The nature of the injection solvent, the injection time and the contents of the waste vials have a profound effect on the pressure injection precision of the relatively hydrophobic solutes. The CE conditions reported in this study are also applicable to the analysis of lysergic acid diethylamide (LSD) exhibits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(02)01774-0DOI Listing

Publication Analysis

Top Keywords

dynamically coated
12
coated capillaries
12
capillary electrophoresis
8
opium alkaloids
8
opium
6
analysis
5
capillaries cyclodextrins
4
cyclodextrins analysis
4
analysis opium
4
capillary
4

Similar Publications

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO Reduction.

J Am Chem Soc

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!