Acrylamide neuropathy. II. Spatiotemporal characteristics of nerve cell damage in brainstem and spinal cord.

Neurotoxicology

Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Anesthesia Research-Moses 7, 111 E. 210th Street, Bronx, NY 10467, USA.

Published: January 2003

Previous studies of acrylamide (ACR) neuropathy in rat PNS [Toxicol. Appl. Pharmacol. 151 (1998) 211] and cerebellum [NeuroToxicology 23 (2002) 397] have suggested that axon degeneration was not a primary effect and was, therefore, of unclear neurotoxicological significance. To continue morphological examination of ACR neurotoxicity in CNS, a cupric silver stain method was used to define spatiotemporal characteristics of nerve cell body, dendrite, axon and terminal degeneration in brainstem and spinal cord. Rats were exposed to ACR at a dose-rate of either 50 mg/kg per day (i.p.) or 21 mg/kg per day (p.o.), and at selected times brains and spinal cord were removed and processed for silver staining. Results show that intoxication at the higher ACR dose-rate produced a nearly pure terminalopathy in brainstem and spinal cord regions, i.e. widespread nerve terminal degeneration and swelling were present in the absence of significant argyrophilic changes in neuronal cell bodies, dendrites or axons. Exposure to the lower ACR dose-rate caused initial nerve terminal argyrophilia in selected brainstem and spinal cord regions. As intoxication continued, axon degeneration developed in white matter of these CNS areas. At both dose-rates, argyrophilic changes in brainstem nerve terminals developed prior to the onset of significant gait abnormalities. In contrast, during exposure to the lower ACR dose-rate the appearance of axon degeneration in either brainstem or spinal cord was relatively delayed with respect to changes in gait. Thus, regardless of dose-rate, ACR intoxication produced early, progressive nerve terminal degeneration. Axon degeneration occurred primarily during exposure to the lower ACR dose-rate and developed after the appearance of terminal degeneration and neurotoxicity. Spatiotemporal analysis suggested that degeneration began at the nerve terminal and then moved as a function of time in a somal direction along the corresponding axon. These data suggest that nerve terminals are a primary site of ACR action and that expression of axonopathy is restricted to subchronic dosing-rates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0161-813x(02)00192-4DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
brainstem spinal
20
acr dose-rate
20
axon degeneration
16
terminal degeneration
16
nerve terminal
16
exposure lower
12
lower acr
12
acr
9
degeneration
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!