This study was undertaken to compare microsphere and laser Doppler flowmetry techniques for the measurement of cerebral blood flow, to assess the effect of probe implantation at the tip of the sensing probe and to measure brain tissue P(O2) (tP(O2)) in response to acute hypoxia. Fetal sheep of ~131 days gestation (n = 8) were chronically instrumented with bilateral laser Doppler probes in the parietal cortices and catheters for injection of fluorescent microspheres. Five days after surgery fetuses were subjected to 1 h periods of baseline control breathing, hypoxia and recovery. Microspheres were injected 10 min prior to and 10, 30, 50 and 120 min after initiation of hypoxia. Microspheres were counted in four 12 mm(3) tissue samples from each hemisphere, the tip of the laser Doppler probe being positioned in the centre of one of the cubes. The cube containing the probe tip was also subdivided into 4 mm(3) pieces of tissue. In response to hypoxia, fetal arterial P(O2) declined from 21 +/- 2 to 12 +/- 1 Torr and brain tissue P(O2) fell from 10 +/- 1 to a nadir of 1 +/- 1 Torr. Each method detected a significant increase in CBF that reached a maximum after 30-45 min, although the increase of flow measured by laser Doppler flowmetry was less than that measured by spheres after 10 and 30 min (P < 0.05). Microspheres did not detect altered flow at the probe tip or heterogeneity of flow in surrounding volumes of cortical tissue. In summary, laser Doppler flowmetry is a useful measure of continuous relative changes of CBF in the chronically instrumented fetal sheep. Flow compensations in acute hypoxia are not adequate to sustain O(2) delivery, and other compensations, including reduced metabolic rate, are possible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342576 | PMC |
http://dx.doi.org/10.1113/jphysiol.2002.025270 | DOI Listing |
Ann Ital Chir
December 2024
Multidisciplinary Department of Medical-Surgical and Dental Specialties, Plastic Surgery Unit, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Naples, Italy.
J Cell Mol Med
December 2024
Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
Hyperbaric oxygen (HBO) therapy has emerged as a potential treatment, shown to enhance blood flow and angiogenesis. However, specific effects and mechanisms of HBO on limb ischaemia responding to a hypoxic environment remain largely unknown. We aimed to investigate the therapeutic potential of HBO in the treatment of limb ischaemia.
View Article and Find Full Text PDFVopr Kurortol Fizioter Lech Fiz Kult
December 2024
National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia.
Unlabelled: Lymphedema is a chronic disabling disease that affects 250 million people worldwide. To this date, it has been proven that treatment of this category of patients should be truly integrated - combining surgical, therapeutic methods and recovery procedures.
Objective: To study the influence of intermittent pneumatic compression (IPC) on microvasculature in patients with lymphedema of the lower extremities.
JPRAS Open
March 2025
Department of Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, Japan.
Objective: This study evaluated the effectiveness of laser Doppler flowmetry (LDF) in detecting perfusion disturbances during microvascular free tissue transfer.
Methods: Conducted at a single centre from December 2020 to September 2022, this prospective study involved 71 patients mainly undergoing head and neck free flap reconstructions, using the Pocket LDF™ for continuous perfusion monitoring.
Results: Out of the 71 cases, data from 69 cases were analysed after excluding those with significant noise or sensor detachment.
Vasc Med
December 2024
Vascular & Interventional Specialists of Orange County, Orange, CA, USA.
Background: Preclinical studies have demonstrated that therapeutic ultrasound (TUS) increases perfusion in peripheral artery disease (PAD). This pilot study assessed the safety and effectiveness of a noninvasive TUS device in patients with advanced PAD.
Methods: A phased array of TUS transducers was fabricated on a wearable sleeve, designed to sonicate the posterior and anterior tibial arteries (and their collaterals) at the calf level.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!