A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of AMPA receptors by cAMP-dependent protein kinase in preBötzinger complex inspiratory neurons regulates respiratory rhythm in the rat. | LitMetric

We hypothesize that phosphorylation of AMPA receptors or associated synaptic proteins modulates the excitability of respiratory neurons in the preBötzinger Complex (preBötC), affecting respiratory rhythm. Using neonatal rat medullary slices that spontaneously generate respiratory rhythm, we examined the role of the cAMP-PKA pathway (PKA: cAMP-dependent protein kinase) in modulating glutamatergic synaptic transmission, the excitability of inspiratory neurons in the preBötC and respiratory rhythm. Microinjection of forskolin, an activator of adenylate cyclase, into the preBötC with or without the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), decreased the period (increased the frequency) of respiratory-related rhythmic motor output in the hypoglossal nerve (XIIn) to 84 % (without IBMX) and to 72 % (with IBMX) of the pre-injection baseline. In the presence of MK-801, a non-competitive NMDA receptor antagonist, microinjection of forskolin plus IBMX decreased the period to 66 % of baseline levels. Microinjection of Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS), a PKA inhibitor, increased the period to 145 % of baseline levels. Concurrent microinjection of Rp-cAMPS and forskolin had no effect on the period. Bath application of 7beta-deacetyl-7beta-[gamma-(morpholino)butyryl]-forskolin hydrochloride (7Db-forskolin, a water-soluble derivative of forskolin): (1) decreased the period to 67 % of baseline levels without affecting the amplitude of integrated XIIn inspiratory discharge, (2) induced a tonic inward current of 29 pA and enhanced inspiratory drive current (the amplitude increased to 183 % and the integral increased to 184 % of baseline) in voltage-clamped (holding potential = -60 mV) preBötC inspiratory neurons and (3) increased the frequency to 195 % and amplitude to 118 % of spontaneous excitatory postsynaptic currents (sEPSCs) during expiratory periods. Dideoxy-forskolin did not have these effects. Intracellular perfusion with the catalytic subunit of PKA (cPKA) into preBötC inspiratory neurons progressively enhanced inspiratory drive currents and, in the presence of TTX, increased the inward currents induced by local ejection of AMPA; the latter currents were blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide (NBQX, an AMPA/kainate receptor antagonist). The effects of cPKA were blocked by co-application of PKA inhibitor (6-22) amide (PKI). These results suggest that phosphorylation of postsynaptic AMPA receptors through the cAMP-PKA pathway modulates both tonic and phasic excitatory amino acid synaptic transmission and excitability of inspiratory neurons in the preBötC and, therefore, regulates respiratory rhythm. Moreover, the basal level of endogenous PKA activity appears to be a determinant of resting respiratory frequency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342649PMC
http://dx.doi.org/10.1113/jphysiol.2002.031005DOI Listing

Publication Analysis

Top Keywords

inspiratory neurons
20
respiratory rhythm
20
ampa receptors
12
decreased period
12
baseline levels
12
camp-dependent protein
8
protein kinase
8
prebötzinger complex
8
inspiratory
8
regulates respiratory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!