Critical illness myopathy is an acquired disorder in which skeletal muscle becomes electrically inexcitable. We previously demonstrated that inactivation of Na+ channels contributes to inexcitability of affected fibres in an animal model of critical illness myopathy in which denervated rat skeletal muscle is treated with corticosteroids (steroid denervated; SD). Our previous work, however, did not address the relative importance of membrane depolarization versus a shift in the voltage dependence of fast inactivation in causing inexcitability. It also remained unknown whether changes in the voltage dependence of activation or slow inactivation play a role in inexcitability. In the current study we found that a hyperpolarizing shift in the voltage dependence of fast inactivation of Na+ channels is the principal factor underlying inexcitability in SD fibres. Although depolarization tends to decrease excitability, it is insufficient to account for inexcitability in SD fibres since many normal and denervated fibres retain normal excitability when depolarized to the same resting potentials as affected SD fibres. Changes in the voltage dependence of activation and slow inactivation of Na+ channels were also observed in SD fibres; however, the changes appear to increase rather than decrease excitability. These results highlight the importance of the change in fast inactivation in causing inexcitability of SD fibres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342662PMC
http://dx.doi.org/10.1113/jphysiol.2002.035188DOI Listing

Publication Analysis

Top Keywords

fast inactivation
16
inexcitability fibres
16
voltage dependence
16
critical illness
12
illness myopathy
12
inactivation na+
12
na+ channels
12
model critical
8
skeletal muscle
8
shift voltage
8

Similar Publications

Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier.

Int J Biol Macromol

January 2025

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.

View Article and Find Full Text PDF

Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.

View Article and Find Full Text PDF

Groundwater is one of the main sources of drinking water, thus, human enteric viruses in groundwater could pose safety risks. Many enteric viruses enter drinking water sources through irrigation or recharge of contaminated water. It is therefore advised to test the potential transport risk with harmless surrogates before wastewater or recycled water is used for irrigation or groundwater recharge.

View Article and Find Full Text PDF

PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.

View Article and Find Full Text PDF

COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!