Actively growing Lactobacillus plantarum CGMCC 1.1856 cells totally inhibited the germination of mold spores. Cell-free supernatant broth from the fermentation of Lactobacillus plantarum could not destroy the viability of mold spore. While the pH of the culture broth and supernatant were about 4.0, and the acidification of non-fermented broth to pH 4.0 with lactic acid could not cause a similar inhibition on spore germination. This experiment discounted the possibility that the inhibitory effect on mold growth was due to the lactic acid produced by Lactobacillus, and suggested that the effect was because of both low pH and microbial competition.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lactobacillus plantarum
8
lactic acid
8
[inhibition lactobacillus
4
lactobacillus species
4
species germination
4
germination aspergillus
4
aspergillus flavus
4
flavus spore]
4
spore] actively
4
actively growing
4

Similar Publications

Holocellulose from a Winemaking By-Product to Develop a Biopolymeric System for Bacterial Immobilization: Adsorption of Ochratoxin A in Wine Model Solutions (Box-Behnken Design).

Toxins (Basel)

January 2025

Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile.

Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex.

View Article and Find Full Text PDF

Comparative Analysis of Freeze-Dried Mushroom Powders on Probiotic and Harmful Bacteria and Its Bioactive Compounds.

J Fungi (Basel)

December 2024

Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary.

(oyster mushroom) holds excellent promise worldwide, bringing several opportunities and augmenting the tool sets used in the biotechnology field, the food industry, and medicine. Our study explores the antimicrobial and probiotic growth stimulation benefits of freeze-dried powders (OMP-TF, oyster mushroom powder from the total fresh sample; OMP-CSR, oyster mushroom powder from the cooked solid residue; OMP-CL, oyster mushroom powder from the cooked liquid), focusing on their bioactive compounds and associated activities. Our research examined polysaccharide fractions-specifically total glucans and α- and β-glucans-alongside secondary metabolites, including polyphenols and flavonoids, from freeze-dried mushroom powders.

View Article and Find Full Text PDF

In recent years, the wine industry has been researching how to improve wine quality along the production value chain. In this scenario, we present here a new tool, MicroVi, a cost-effective chip-sized microscopy solution to detect and count yeast cells in wine samples. We demonstrate that this novel microscopy setup is able to measure the same type of samples as an optical microscopy system, but with smaller size equipment and with automated cell count configuration.

View Article and Find Full Text PDF

Microbiota dynamics and metabolic mechanisms in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus xylosus.

Food Res Int

February 2025

China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China. Electronic address:

Lactiplantibacillus plantarum and Staphylococcus xylosus are common starters for fermented sausages. Several studies have demonstrated the impact of these two strains on the quality of fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear.

View Article and Find Full Text PDF

The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!