The physiological significance of the cooperativity of human hemoglobin (Hb) is considered from the viewpoint of the effectiveness of the Bohr shift at the sites of O(2) release and uptake across the placental membrane. The effects of the Bohr shift was examined by changing the O(2) saturation of Hb (S(pO2)) per unit change in P(50), -dS(PO2)/d P(50), where P(50) is partial pressure of O(2) at half saturation. The Bohr shift at the sites of O(2) uptake and release was found to be highly effective in both fetal and maternal bloods at physiological degree of cooperativity (Hill's coefficient, n=2.65). From the results obtained in this paper, it is concluded that the positions of OECs of fetal and maternal Hbs are regulated to receive a maximal benefit from the Bohr shift, and that a relatively low n value of human tetrameric Hb is adequate for the O(2) and CO(2) exchange across the placental membrane.

Download full-text PDF

Source
http://dx.doi.org/10.2108/zsj.20.23DOI Listing

Publication Analysis

Top Keywords

bohr shift
20
cooperativity human
8
effectiveness bohr
8
shift sites
8
placental membrane
8
fetal maternal
8
bohr
5
shift
5
human fetal
4
fetal adult
4

Similar Publications

Article Synopsis
  • Cardiorespiratory signals, previously considered noise in fMRI research, are now recognized for their potential insights into brain function and health.
  • These signals, including heart rate variability and respiratory patterns, reflect the interaction between cardiovascular, respiratory, and neural systems that support brain activity.
  • Understanding these signals can improve fMRI data interpretation, highlighting the connections between heart, brain, and overall physiological health.
View Article and Find Full Text PDF

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

Intermolecular Interactions and Quantum Interference Effects in Molecular Junctions.

ACS Nanosci Au

December 2024

Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen 2100, Denmark.

Destructive quantum interference (DQI) leads to a decrease in the conductance of certain well-documented molecules. Experimental observations have revealed both direct and indirect manifestations of DQI, although a comprehensive understanding of the underlying causes of these distinct outcomes remains elusive. In both cases, DQI lowers the conductance, but only the direct case exhibits a characteristic V-shaped dip in differential conductance.

View Article and Find Full Text PDF
Article Synopsis
  • The research evaluates Al-doped ZnO (AZO) as a transparent gate material, finding it enhances quantum dot emission intensity over traditional Ti gates, while also noting issues with charge artifacts at higher gate voltages.
  • It also explores switching behaviors in GaAs cone-shell quantum dots (CSQDs) under vertical electric fields, observing localized charge carrier densities and minimal interference from interface charges at low voltages.
  • The findings reveal a new asymmetric strong-weak confinement in quantum dots, where the hole transitions from strong to weak confinement while the electron remains strongly confined, supporting theoretical predictions regarding hole probability densities.
View Article and Find Full Text PDF

The size-dependent photoluminescence (PL) blue shift in organometal halide perovskite nanoparticles has traditionally been attributed to quantum confinement effects (QCEs), irrespective of nanoparticle size. However, this interpretation lacks rigor for nanoparticles with diameters exceeding the exciton Bohr radius (rB). To address this, we investigated the PL of MAPbBr nanoparticles (MNPs) with diameters ranging from ~2 to 20 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!