The physiological significance of the cooperativity of human hemoglobin (Hb) is considered from the viewpoint of the effectiveness of the Bohr shift at the sites of O(2) release and uptake across the placental membrane. The effects of the Bohr shift was examined by changing the O(2) saturation of Hb (S(pO2)) per unit change in P(50), -dS(PO2)/d P(50), where P(50) is partial pressure of O(2) at half saturation. The Bohr shift at the sites of O(2) uptake and release was found to be highly effective in both fetal and maternal bloods at physiological degree of cooperativity (Hill's coefficient, n=2.65). From the results obtained in this paper, it is concluded that the positions of OECs of fetal and maternal Hbs are regulated to receive a maximal benefit from the Bohr shift, and that a relatively low n value of human tetrameric Hb is adequate for the O(2) and CO(2) exchange across the placental membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2108/zsj.20.23 | DOI Listing |
Neuroimage
February 2025
Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:
ACS Nano
January 2025
Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.
View Article and Find Full Text PDFACS Nanosci Au
December 2024
Department of Chemistry and Nano-Science Center, University of Copenhagen, Copenhagen 2100, Denmark.
Destructive quantum interference (DQI) leads to a decrease in the conductance of certain well-documented molecules. Experimental observations have revealed both direct and indirect manifestations of DQI, although a comprehensive understanding of the underlying causes of these distinct outcomes remains elusive. In both cases, DQI lowers the conductance, but only the direct case exhibits a characteristic V-shaped dip in differential conductance.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
Center for Hybrid Nanostructures (CHyN), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
Nanomaterials (Basel)
September 2024
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
The size-dependent photoluminescence (PL) blue shift in organometal halide perovskite nanoparticles has traditionally been attributed to quantum confinement effects (QCEs), irrespective of nanoparticle size. However, this interpretation lacks rigor for nanoparticles with diameters exceeding the exciton Bohr radius (rB). To address this, we investigated the PL of MAPbBr nanoparticles (MNPs) with diameters ranging from ~2 to 20 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!