The non-classical major histocompatibility complex class I molecule HLA-G is expressed mainly by extravillous trophoblasts at the materno-foetal interface. HLA-G has been found to bind endogenously processed nonameric peptides but its function as a restriction element for a cytotoxic T cell response to viruses with tropism for trophoblastic cells has never been demonstrated. In this study, candidate viral peptides derived from human cytomegalovirus (HCMV) pp65 (UL83), which stabilized the HLA-G molecule on HLA-G-transfected T2 cells, were identified. The specific anti-pp65 cytotoxic T lymphocyte (CTL) response restricted by HLA-G in triple transgenic mice (HLA-G, human beta2m, human CD8alpha) was then investigated by injection of dendritic cells loaded with synthetic pp65-derived peptides or by infection with canarypox virus expressing pp65. Results showed that CTLs from HLA-G mice have the capacity to kill target cells either infected with recombinant vaccinia viruses expressing pp65 or loaded with specific pp65-derived peptides using HLA-G as an antigen-presenting molecule. It was also demonstrated that these HLA-G-restricted pp65-specific T cells are able to kill the human astrocytoma cell line U373, which was transfected with HLA-G and infected with HCMV. Moreover, using HLA-G tetramers refolded with a synthetic pp65-derived peptide, peptide-specific CD8(+) cells restricted by HLA-G have been detected in vivo. These findings provide the first evidence that HLA-G can select anti-HCMV-restricted CTLs in vivo, although the potency of this cytolytic response is limited (20-25 %). The weak HLA-G-restricted anti-HCMV response is probably due to HLA-G-mediated inhibitory signals on the development of an antiviral CTL response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.18735-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!