Tyrosine recombinases participate in diverse biological processes by catalyzing recombination between specific DNA sites. Although a conserved protein fold has been described for the catalytic (CAT) domains of five recombinases, structural relationships between their core-binding (CB) domains remain unclear. Despite differences in the specificity and affinity of core-type DNA recognition, a conserved binding mechanism is suggested by the shared two-domain motif in crystal structure models of the recombinases Cre, XerD and Flp. We have found additional evidence for conservation of the CB domain fold. Comparison of XerD and Cre crystal structures showed that their CB domains are closely related; the three central alpha-helices of these domains are superposable to within 1.44 A. A structure-based multiple sequence alignment containing 25 diverse CB domain sequences provided evidence for widespread conservation of both structural and functional elements in this fold. Based upon the Cre and XerD crystal structures, we employed homology modeling to construct a three-dimensional structure for the lambda integrase CB domain. The model provides a conceptual framework within which many previously identified, functionally important amino acid residues were investigated. In addition, the model predicts new residues that may participate in core-type DNA binding or dimerization, thereby providing hypotheses for future genetic and biochemical experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149183 | PMC |
http://dx.doi.org/10.1093/nar/gkg142 | DOI Listing |
bioRxiv
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio.3.
Cre, a conservative site-specific tyrosine recombinase, is a powerful gene editing tool in the laboratory. Expanded applications in human health are hindered by lack of understanding of the mechanism by which Cre selectively binds and recombines its cognate sequences. This knowledge is essential for retargeting the enzyme to new sites and for mitigating effects of off-target recombination.
View Article and Find Full Text PDFSci Adv
December 2024
B CUBE, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
Multiple antibiotic resistances are a major global health threat. The predominant tool for adaptation in Gram-negative bacteria is the integron. Under stress, it rearranges gene cassettes to offer an escape using the tyrosine recombinase IntI, recognizing folded DNA hairpins, the sites.
View Article and Find Full Text PDFUnlabelled: Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 FAK mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 background.
View Article and Find Full Text PDFCancer Cell
November 2024
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:
Cancer evolution is a multifaceted process leading to dysregulation of cellular expansion and differentiation through somatic mutations and epigenetic dysfunction. Clonal expansion and evolution is driven by cell-intrinsic and -extrinsic selective pressures, which can be captured with increasing resolution by single-cell and bulk DNA sequencing. Despite the extensive genomic alterations revealed in profiling studies, there remain limited experimental systems to model and perturb evolutionary processes.
View Article and Find Full Text PDFCancer Res
November 2024
St. Jude Children's Research Hospital, Memphis, TN, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!