Dietary lecithin can stimulate bile formation and biliary lipid secretion, particularly cholesterol output in bile. Studies also suggested that the lecithin-rich diet might modify hepatic cholesterol homeostasis and lipoprotein metabolism. Therefore, we examined hepatic activities of 3-hydroxy-3 methylglutaryl coenzyme A reductase "HMG -CoA reductase", cholesterol 7 alpha-hydroxylase and acyl-CoA: cholesterol acyltransferase "ACAT" as well as plasma lipids and lipoprotein composition in rats fed diets enriched with 20% of soybean lecithin during 14 days. We also evaluated the content of hepatic canalicular membrane proteins involved in lipid transport to the bile (all P-glycoproteins as detected by the C 219 antibody and the sister of P-glycoprotein "spgp" or bile acid export pump) by Western blotting. As predicted, lecithin diet modified hepatic cholesterol homeostasis. The activity of hepatic HMG-CoA reductase and cholesterol 7 alpha-hydroxylase was enhanced by 30 and 12% respectively, while microsomal ACAT activity showed a dramatic decrease of 75%. As previously reported from ACAT inhibition, the plasma level and size of very low-density lipoprotein (VLDL) were significantly decreased and bile acid pool size and biliary lipid output were significantly increased. The canalicular membrane content of lipid transporters was not significantly affected by dietary lecithin. The current data on inhibition of ACAT activity and related metabolic effects by lecithin mimic the previously reported effects following drug-induced inhibition of ACAT activity, suggesting potential beneficial effects of dietary lecithin supplementation in vascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0955-2863(02)00253-xDOI Listing

Publication Analysis

Top Keywords

hepatic cholesterol
12
dietary lecithin
12
acat activity
12
effects dietary
8
soybean lecithin
8
lipid transport
8
biliary lipid
8
cholesterol homeostasis
8
cholesterol alpha-hydroxylase
8
canalicular membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!