To determine regional and muscle layer differences in the cholinergic nerve control of uterine activity, functional and immunohistochemical experiments were carried out on the cervix, and circular and longitudinal muscle from the caudal and rostral uterine horn in cyclic rats. During oestrus, in vitro electrical field stimulation evoked contractions in the cervix and myometrium of the caudal horn, predominantly in circular muscle layer. All evoked responses were tetrodotoxin-sensitive and completely abolished by atropine, thus were cholinergic nerve-mediated. In contrast, no electrical field stimulation-induced contraction occurred in either the circular or longitudinal muscle from the rostral uterus. Concentration-response curves for carbachol showed that muscarinic receptor-mediated contractions occurred in all uterine regions and muscle layers during oestrus. Immunohistochemistry for the cholinergic nerve marker, vesicular acetylcholine transporter showed that the predominance of the acetylcholine-dependent contractions in circular muscle preparations were related to a layer-specific distribution of cholinergic nerve fibres, abundant in the circular muscle but scarce in the longitudinal muscle layer. In addition, the absence of electrical field stimulation-evoked acetylcholine-dependent contractions in the rostral uterus was correlated to a marked decrease in the density of cholinergic fibres along the caudo-rostral axis of the organ. In the uterus from diestrus rats, contractions were not elicited in response to electrical field stimulation in the cervix and circular or longitudinal muscle from the caudal as well as rostral uterine horn. Addition of cumulative doses of carbachol failed to increase in a concentration-dependent manner the frequency and amplitude of contractions in the cervix and myometrial layers from either the caudal and rostral uterine horn. The distribution and density of cholinergic nerve fibres along the uterus and between the muscle layers did not differ from the oestrus stage. We conclude that the cholinergic nerve control of uterine activity is layer-specific and predominant in the caudal uterine horn and the cervix. Impairment of this nerve control from oestrus to diestrus stages occurred in relation to a decrease in the myometrial sensitivity to muscarinic stimulation, not to a decrease in the density of cholinergic innervation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1566-0702(02)00233-3 | DOI Listing |
Toxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy.
Clonus is characterized by involuntary, rhythmic, oscillatory muscle contractions, typically triggered by rapid muscle stretching and is frequently associated with spastic equinovarus foot (SEVF), where it may increase risk of falls and cause discomfort, pain, and sleep disorders. We hypothesize that selective diagnostic nerve block (DNB) of the tibial nerve motor branches can help identify which muscle is primarily responsible for clonus in patients with SEVF and provide useful information for botulinum neurotoxin type A (BoNT-A) treatment. This retrospective study explored which calf muscles contributed to clonus in 91 patients with SEFV after stroke (n = 31), multiple sclerosis (n = 21), and cerebral palsy (n = 39), using selective DNB.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.
View Article and Find Full Text PDFBMC Anesthesiol
December 2024
Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.
Objective: This study aimed to observe the impact of Tthoracic paravertebral nerve blockade(TPVB) at left T7 level on the α7nAChR-dependent cholinergic anti-inflammatory pathway in patients undergoing thoracoscopic lobectomy.
Methods: Scheduled thoracoscopic lung surgery patients at the First Affiliated Hospital of Nanchang University from August to September 2023 were divided into two groups according to the surgical site. The experimental group underwent left T7 paravertebral nerve blockade (LTPVB group), while the control group underwent right T7 paravertebral nerve blockade (RTPVB group).
Unlabelled: Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!