Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cyclic AMP response element binding protein (CREB) has major roles in mediating adaptive responses at glutamatergic synapses and in the neuroprotective effects of neurotrophins. CREB has been implicated as a potential mediator of antidepressant actions. In vitro, chronic lithium treatment has been shown to promote neuronal cell survival. In the present study, we have used cultures of cerebellar granule neurons to analyze the effects of acute and chronic lithium treatment on the response to toxic concentrations of glutamate. Such concentrations of glutamate decrease the phosphorylation of CREB at serine(133) in an N-methyl-D-aspartate (NMDA) receptor-dependent manner. Chronic, but not acute, lithium treatment suppresses glutamate-induced decreases in phosphorylated CREB, and transfection studies indicate that chronic lithium, in the presence of a glutamate stimulus, markedly increases CRE-driven gene expression. Experiments with selected pharmacological reagents indicate that the glutamate-induced decreases in phosphorylated CREB are regulated primarily by protein phosphatase 1. Chronic lithium treatment not only decreases protein phosphatase 1 activity under these circumstances, but also augments glutamate-induced increases in MEK activity. PD 98059, a MEK inhibitor, prevents chronic lithium treatment from increasing phosphorylated CREB levels in glutamate-treated neurons. We conclude from these results that chronic lithium treatment is permissive for maintaining higher phosphorylated CREB levels in the presence of glutamate in part by decreasing protein phosphatase 1 activity and in part by increasing MEK activity. Higher levels of phosphorylated CREB and CRE-responsive genes such as bcl-2 may be responsible for lithium's reported effects on neuronal survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(02)00573-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!