Dodecylbenzene sulfonate (DBS) is a component of linear alkylbenzene sulfonate (LAS), an anionic surfactant, mainly used in household detergents. Due to the large quantity of DBS in use, there is concern over adverse environmental effects. This work examined the toxicokinetics and toxicity of the 2-phenyl isomer of dodecylbenzene sulfonate in 4-d, 10-d, and partial life-cycle tests on the midge, Chironomus riparius, exposed to aqueous solutions. Toxicokinetics were determined in 10-d uptake and 5-d elimination tests. The toxicokinetics were based on parent compound concentration in water and yielded an uptake coefficient (ku) of 17.5 (14.87-20.20) ml/g/h, an elimination rate constant (ke) of 0.073 (0.062-0.085) per h, a bioconcentration factor (BCF) of 56 to 240, and a half-life (t 1/2) of 9.5 (8.0-11.0) h. Biotransformation measurements did not reveal evidence for DBS metabolism. Thus, body residues, determined in the toxicity study, represent parent compound. In toxicity tests, 4- and 10-d LR50s (the body residue required to cause 50% mortality) in live midges were 0.72 (0.65-0.79) and 0.18 (0.08-0.42) mmol/kg, respectively. Thirty-day LR50s were 0.18 (0.09-1.64) and 0.21 (0.15-0.39) mmol/kg in duplicate studies. Of the sublethal endpoints, only developmental time increase was significant, with the lowest-observed-effect residues of 0.085 (0.067-0.105) and 0.100 (0.087-0.114) mmol/kg for male and female midges, respectively. Deformities in surviving larvae were also observed as chronic responses for body residues exceeding the 30-d LR50. The body residues required for mortality suggest that DBS acts like a polar narcotic in the midge.
Download full-text PDF |
Source |
---|
Signal Transduct Target Ther
December 2024
Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
Antimicrobial peptides (AMPs) are small molecular peptides widely existing in the innate immunity of organisms, serving as the first line of defense. Natural AMPs possess various biological activities and are difficult to develop drug resistance. However, they are easily broken down by digestive enzymes in the body.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4.
Despite the remarkable resistance of the nucleic acid phosphodiester backbone to degradation affording genetic stability, the P-O bond must be broken during DNA repair and RNA metabolism, among many other critical cellular processes. Nucleases are powerful enzymes that can enhance the uncatalyzed rate of phosphodiester bond cleavage by up to ∼10-fold. Despite the most well accepted hydrolysis mechanism involving two metals (M to activate a water nucleophile and M to stabilize the leaving group), experimental evidence suggests that some nucleases can use a single metal to facilitate the chemical step, a controversial concept in the literature.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States.
The formation of Lewy bodies (LB) is a pathological hallmark for synucleinopathies, which is an umbrella term for many diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. One of the main components of LB is the aggregates of phosphorylated modification of α-Synuclein at residue 129 (αS-129), a neuronal protein expressed in the dopaminergic neurons in the brain. There are equivocal results about the role of αS-129, suggesting its involvement in both potentiating pathology and a functional role to rescue pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!