Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions.

Proteins

Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA.

Published: February 2003

Calmodulin is an EF-hand calcium-binding protein (148 a.a.) essential in intracellular signal transduction. Its homologous N- and C-terminal domains are separated by a linker that appears disordered in NMR studies. In a study of an N-domain fragment of Paramecium CaM (PCaM1-75), the addition of linker residues 76 to 80 (MKEQD) raised the Tm by 9 degrees C and lowered calcium binding by 0.54 kcal/mol (Sorensen et al., [Biochemistry 2002;41:15-20]), showing that these tether residues affect energetics as well as being a barrier to diffusion. To determine the individual contributions of residues 74 through 80 (RKMKEQD) to stability and calcium affinity, we compared a nested series of 7 fragments (PCaM1-74 to PCaM1-80). For the first 4, PCaM1-74 through PCaM1-77, single amino acid additions at the C-terminus corresponded to stepwise increases in thermostability and decreases in calcium affinity with a net change of 13.5 degrees C in Tm and 0.55 kcal/mol in free energy. The thermodynamic properties of fragments PCaM1-77 through PCaM1-80 were nearly identical. We concluded that the 3 basic residues in the sequence from 74 to 77 (RKMK) are critical to the increased stability and decreased calcium affinity of the longer N-domain fragments. Comparisons of NMR (HSQC) spectra of 15N-PCaM1-74 and 15N-PCaM1-80 and analysis of high-resolution structural models suggest these residues are latched to amino acids in helix A of CaM. The addition of residues E78, Q79, and D80 had a minimal effect on sites I and II, but they may contribute to the mechanism of energetic communication between the domains.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.10281DOI Listing

Publication Analysis

Top Keywords

calcium affinity
16
residues
7
calcium
5
basic interdomain
4
interdomain boundary
4
boundary residues
4
residues calmodulin
4
calmodulin decrease
4
decrease calcium
4
affinity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!