Platelet-derived growth factor (PDGF), a potent serum mitogen for vascular smooth muscle cells (VSMCs), plays an important role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, is involved in ion homeostasis. VSMCs possess K-Cl COT activity and the KCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-Cl COT activity and mRNA expression in primary cultures of rat VSMCs. K-Cl COT was determined as the Cl-dependent Rb influx and mRNA expression by semiquantitative RT-PCR. Twenty four-hour serum deprivation inhibited basal K-Cl COT activity. Addition of PDGF increased total protein content and K-Cl COT activity in a time-dependent manner. PDGF activated K-Cl COT in a dose-dependent manner, both acutely (10 min) and chronically (12 h). AG-1296, a selective inhibitor of the PDGF receptor tyrosine kinase, abolished these effects. Actinomycin D and cycloheximide had no effect on the acute PDGF activation of K-Cl COT, suggesting posttranslational regulation by the drug. Furthermore, PDGF increased KCC1 and decreased KCC3 mRNA expression in a time-dependent manner. These results indicate that chronic activation of K-Cl COT activity by PDGF may involve regulation of the two KCC mRNA isoforms, with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00312.2002 | DOI Listing |
Clin Exp Pharmacol Physiol
July 2007
Cell Biophysics Group, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
1. Ion gradients across the cell membrane are important for proper cellular communication and homeostasis. With the exception of erythrocytes, chloride (Cl), one of the most important free anions in animal cells, is not distributed at thermodynamic equilibrium across the plasma membrane.
View Article and Find Full Text PDFActa Physiol (Oxf)
January 2007
Cell Biophysics Group, Wright State University School of Medicine, Dayton, OH 45435, USA.
The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used.
View Article and Find Full Text PDFLife Sci
July 2005
Department of Pharmacology & Toxicology, Wright State University, School of Medicine, Dayton, OH 45435, USA.
K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved.
View Article and Find Full Text PDFJ Membr Biol
October 2004
Department of Pharmacology, Wright State University, School of Medicine, Dayton, OH 45435-0002, USA.
This review intends to summarize the vast literature on K-Cl cotransport (COT) regulation from a functional and genetic viewpoint. Special attention has been given to the signaling pathways involved in the transporter's regulation found in several tissues and cell types, and more specifically, in vascular smooth muscle cells (VSMCs). The number of publications on K-Cl COT has been steadily increasing since its discovery at the beginning of the 1980s, with red blood cells (RBCs) from different species (human, sheep, dog, rabbit, guinea pig, turkey, duck, frog, rat, mouse, fish, and lamprey) being the most studied model.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2003
Department of Pharmacology and Toxicology; and Physiology and Biophysics, Wright State University, School of Medicine, Dayton, Ohio 45435, USA.
Platelet-derived growth factor (PDGF), a potent serum mitogen for vascular smooth muscle cells (VSMCs), plays an important role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, is involved in ion homeostasis. VSMCs possess K-Cl COT activity and the KCC1 and KCC3 isoforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!