Assembly of the U1 snRNP involves interactions with the backbone of the terminal stem of U1 snRNA.

RNA

Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA.

Published: February 2003

Nucleotide analog interference mapping (NAIM) is a powerful method for identifying RNA functional groups involved in protein-RNA interactions. We examined particles assembled on modified U1 small nuclear RNAs (snRNAs) in vitro and detected two categories of interferences. The first class affects the stability of two higher-order complexes and comprises changes in two adenosines, A65 and A70, in the loop region previously identified as the binding site for the U1 small nuclear ribonucleoprotein (snRNP)-specific U1A protein. Addition of an exocyclic amine to position 2 of A65 interferes strongly with protein binding, whereas removal or modification of the exocyclic amine at position 6 makes little difference. Modifications of A70 exhibit the opposite effects: Additions at position 2 are permitted, but modification of the exocyclic amine at position 6 significantly inhibits protein binding. These interactions, critical for U1A-U1 snRNA recognition in the context of in vitro snRNP assembly, are consistent with previous structural studies of the isolated protein with the RNA hairpin containing the U1A binding site. The second category of interferences affects all partially assembled U1-protein complexes by decreasing the stability of Sm core protein associations. Interestingly, most strong interferences occur at phosphates in the terminal stem-loop region of U1, rather than in the Sm binding site. These data argue that interactions with the phosphate backbone of the terminal stem loop are essential for the stable association of Sm core proteins with the U1 snRNA. We suggest that the stem loop of all Sm snRNAs may act as a clamp to hold the ring of Sm proteins in place.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370385PMC
http://dx.doi.org/10.1261/rna.2136103DOI Listing

Publication Analysis

Top Keywords

binding site
12
exocyclic amine
12
amine position
12
backbone terminal
8
terminal stem
8
small nuclear
8
protein binding
8
modification exocyclic
8
stem loop
8
binding
5

Similar Publications

Characterization of insulin and bile acid complexes in liposome by different mass spectrometry techniques.

Anal Bioanal Chem

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.

Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.

View Article and Find Full Text PDF

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

Unbiased picture of the ligand docking process for the hevein protein-oligosaccharide complex.

Sci Rep

January 2025

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.

The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.

View Article and Find Full Text PDF

Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!