Sequence specific fluorescence detection of double strand DNA.

J Am Chem Soc

The Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

Published: February 2003

Methods for the fluorescent detection of specific sequences of double strand DNA in homogeneous solution may be useful in the field of human genetics. A series of hairpin polyamides with tetramethyl rhodamine (TMR) attached to an internal pyrrole ring were synthesized, and the fluorescence properties of the polyamide-fluorophore conjugates in the presence and absence of duplex DNA were examined. We observe weak TMR fluorescence in the absence of DNA. Addition of >/=1:1 match DNA affords a significant fluorescence increase over equimolar mismatch DNA for each polyamide-TMR conjugate. Polyamide-fluorophore conjugates offer a new class of sensors for the detection of specific DNA sequences without the need for denaturation. The polyamide-dye fluorescence-based method can be used to screen in parallel the interactions between aromatic ring pairs and the minor groove of DNA even when the binding site contains a non-Watson-Crick DNA base pair. A ranking of the specificity of three polyamide ring pairs-Py/Py, Im/Py, and Im/Im-was established for all 16 possible base pairs of A, T, G, and C in the minor groove. We find that Im/Im is an energetically favorable ring pair for minor groove recognition of the T.G base pair.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja021011qDOI Listing

Publication Analysis

Top Keywords

minor groove
12
dna
9
double strand
8
strand dna
8
detection specific
8
polyamide-fluorophore conjugates
8
pairs minor
8
base pair
8
sequence specific
4
fluorescence
4

Similar Publications

Histone N-tails modulate sequence-specific positioning of nucleosomes.

J Biol Chem

December 2024

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.

View Article and Find Full Text PDF

Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study.

Biochim Biophys Acta Gen Subj

December 2024

Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. Electronic address:

The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

The ability to address specific sequences within DNA is of tremendous interest in biotechnology and biomedicine. Various technologies have been established over the past few decades, such as nicking enzymes and methyltransferase-directed sequence-specific labeling, transcription activator-like effector nucleases (TALENs), the CRISPR-Cas9 system, and polyamides of heterocycles as sequence-specific DNA minor groove binders. Pyrrole-imidazole polyamides have been reported to recognize predetermined DNA sequences, and some successful attempts have demonstrated their potential in regulating gene expression.

View Article and Find Full Text PDF

Using a computer modeling approach, we proposed a structure for a potential GC-specific DNA ligand, which could form a complex with DNA in the minor groove similar to that formed by Hoechst 33258 at DNA AT-enriched sites. According to this model, , a bisbenzoxazole ligand, was synthesized. The results of spectrophotometric methods supported the complex formation of the compound under study with DNA differing in the nucleotide composition.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

December 2024

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!