We have developed a high-throughput microfabricated, reusable glass chip for the functional integration of reverse transcription (RT) and polymerase chain reaction (PCR) in a continuous-flow mode. The chip allows for selection of the number of amplification cycles. A single microchannel network was etched that defines four distinct zones, one for RT and three for PCR (denaturation, annealing, extension). The zone temperatures were controlled by placing the chip over four heating blocks. Samples and reagents for RT and PCR were pumped continuously through appropriate access holes. Outlet channels were etched after cycles 20, 25, 30, 35, and 40 for product collection. The surface-to-volume ratio for the PCR channel is 57 mm(-1) and the channel depth is 55 microm, both of which allow very rapid heat transfer. As a result, we were able to collect PCR product after 30 amplification cycles in only 6 min. Products were collected in 0.2-mL tubes and analyzed by agarose gel electrophoresis and ethidium bromide staining. We studied DNA and RNA amplification as a function of cycle number. The effect of the number of the initial DNA and RNA input molecules was studied in the range of 2.5 x 10(6) - 1.6 x 10(8) and 6.2 x 10(6) - 2 x 10(8), respectively. Successful amplification of a single-copy gene (beta-globin) from human genomic DNA was carried out. Furthermore, PCR was performed on three samples of DNA of different lengths (each of 2-microL reaction volume) flowing simultaneously in the chip, and the products were collected after various numbers of cycles. Reverse transcription was also carried out on four RNA samples (0.7-microL reaction volume) flowing simultaneously in the chip, followed by PCR amplification. Finally, we have demonstrated the concept of manually pumped injection and transport of the reaction mixture in continuous-flow PCR for the rapid generation of amplification products with minimal instrumentation. To our knowledge, this is the first report of a monolithic microdevice that integrates continuous-flow RT and PCR with cycle number selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac0260239 | DOI Listing |
Eur J Hum Genet
January 2025
CENTOGENE GmbH, Rostock, Germany.
We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFNat Commun
January 2025
European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.
View Article and Find Full Text PDFCell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFCell Prolif
January 2025
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China.
Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!