Buspirone-induced antinociception is mediated by L-type calcium channels and calcium/caffeine-sensitive pools in mice.

Psychopharmacology (Berl)

Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, 100083, Beijing, P.R. China.

Published: March 2003

Rationale: Previous studies have shown that buspirone, a partial 5-HT(1A) receptor agonist, produces antinociceptive effects in rats and mice; Ca(2+) plays a critical role as a second messenger in mediating nociceptive transmission. 5-HT(1A) receptors have been proven to be coupled functionally with various types of Ca(2+) channels in neurons, including N-, P/Q-, T-, or L-type. It was of interest to investigate the involvement of extracellular/intracellular Ca(2+) in buspirone-induced antinociception.

Objectives: To determine whether central serotonergic pathways participate in the antinociceptive processes of buspirone, and investigate the involvement of Ca(2+) mechanisms, particularly L-voltage-gated Ca(2+) channels and Ca(2+)/caffeine-sensitive pools, in buspirone-induced antinociception.

Methods: Antinociception was assessed using the hot-plate test (55 degrees C, hind-paw licking latency) in mice treated with either buspirone (1.25-20 mg/kg i.p.) alone or the combination of buspirone and fluoxetine (2.5-10 mg/kg i.p.), 5-HTP (25 mg/kg i.p.), nimodipine (2.5-10 mg/kg i.p.), nifedipine (2.5-10 mg/kg i.p.), CaCl(2) (25-200 nmol per mouse i.c.v.), EGTA (5-30 nmol per mouse i.c.v.), or ryanodine (0.25-2 nmol per mouse i.c.v.).

Results: Buspirone dose dependently increased the licking latency in the hot-plate test in mice. This effect of buspirone was enhanced by fluoxetine, 5-HTP, nimodipine, and nifedipine. Interestingly, central administration of Ca(2+) reversed the antinociceptive effects of buspirone. In contrast to these, ryanodine or EGTA administered centrally potentiated buspirone-induced antinociception.

Conclusions: Decreasing neuronal Ca(2+) levels potentiated buspirone-induced antinociception; conversely, increasing intracellular Ca(2+) abolished the antinociceptive effects of buspirone. These results suggest that Ca(2+) influx from extracellular fluid and release of Ca(2+) from Ca(2+)/caffeine-sensitive microsomal pools may be involved in buspirone-induced antinociception.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-002-1327-4DOI Listing

Publication Analysis

Top Keywords

buspirone-induced antinociception
12
antinociceptive effects
12
25-10 mg/kg
12
nmol mouse
12
ca2+
10
buspirone
8
ca2+ channels
8
investigate involvement
8
hot-plate test
8
licking latency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!